Our publications
Publications of 2023
N. Helbig, F. Hammer, S. Barber, (2023) Characterizing the impact of spatial scales on near-surface wind speed and wind power generation in a mountainous environment, Abstract EGU23-9025 (copernicus.org)
J.G. Schepers, A.J. Brand, (2023) Enhanced Field Rotor Aerodynamics - ECN Enhanced Field Rotor Aerodynamics - ECN | Zenodo
S. Barber, F. Hammer, L. Hilfiker, M. Hofsäss, O. Bischoff, Y. Marykovskiy, (2023) Aventa AV-7 (6kW) IET-OST Research Wind Turbine SCADA Aventa AV-7 (6kW) IET-OST Research Wind Turbine SCADA | Zenodo
S. Fogelström, H. Johansson, O. Carlson, M. Hofsäss, O. Bischoff, Y. Marykovskiy, S. Barber, (2023) Björkö Wind Turbine Version 1 (45kW) SCADA Björkö Wind Turbine Version 1 (45kW) SCADA | Zenodo
E. Chatzi, I. Abdallah, M. Hofsäss, O. Bischoff, S. Barber, Y. Marykovskiy (2023) Aventa AV-7 ETH Zurich Research Wind Turbine SCADA and high frequency Structural Health Monitoring (SHM) data Aventa AV-7 ETH Zurich Research Wind Turbine SCADA and high frequency Structural Health Monitoring (SHM) data | Zenodo
S. Barber, F. Hammer, C. Henderson, (2023) Can data sharing really provide added value? Practical data sharing recommendations for the wind energy sector Can data sharing really provide added value? Practical data sharing recommendations for the wind energy sector - IOPscience
S. Barber, A. M. Sempreviva, S. Sheng, D. Farren, D. Zappalá, (2023) A use-case-driven approach for demonstrating the added value of digitalisation in wind energy A use-case-driven approach for demonstrating the added value of digitalisation in wind energy - IOPscience
G. Duthé, I. Abdallah, S. Barber, E. Chatzi, (2023) Graph Neural Networks for Aerodynamic Flow Reconstruction from Sparse Sensing [2301.03228] Graph Neural Networks for Aerodynamic Flow Reconstruction from Sparse Sensing (arxiv.org)
G. Duthé, I. Abdallah, S. Barber, E. Chatzi, (2023) A Graph Neural Network Approach for Aerodynamic Sensor Placement A Graph Neural Network Approach for Aerodynamic Sensor Placement | Zenodo
Y. Marykovskiy, I. Abdallah, S. Barber, E. Chatzi, (2023) Extended Taxonomy of Digital Twins Extended Taxonomy of Digital Twins | Zenodo
J. Deparday, Y. Marikovskiy, T. Polonelli, Th. Clark, S. Barber, (2023) How to analyse blade aerodynamics on an operating wind turbine with low-cost pressure sensors? How to analyse blade aerodynamics on an operating wind turbine with low-cost pressure sensors? | Zenodo
Y. Marykovskiy, J. Deparday, I. Abdallah, G. Duthé, S. Barber, E. Chatzi, (2023) Hybrid Model for Inflow Conditions Inference on Airfoils Under Uncertainty Hybrid Model for Inflow Conditions Inference on Airfoils Under Uncertainty | AIAA Journal
T. Polonelli J. Deparday, I. Abdallah, S. Barber, E. Chatzi, M. Magno, (2023) Instrumentation and Measurement Systems: Aerosense: A Wireless, Non-Intrusive, Flexible, and MEMS-Based Aerodynamic and Acoustic Measurement System for Operating Wind Turbines Instrumentation and Measurement Systems: Aerosense: A Wireless, Non-Intrusive, Flexible, and MEMS-Based Aerodynamic and Acoustic Measurement System for Operating Wind Turbines | IEEE Journals & Magazine | IEEE Xplore
S. Barber, U. Izagirre, O. Serradilla, J. Olaizola, E. Zugasti, J.I. Aizpurua, A. E. Milani, F. Sehnke, Y. Sakagami, Ch. Henderson, (2023) Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation Energies | Free Full-Text | Best Practice Data Sharing Guidelines for Wind Turbine Fault Detection Model Evaluation (mdpi.com)
Publications of 2022
A. Clifton, S. Barber, A. Bray, P. Enevoldsen, J. Fields, A.M. Sempreviva, L. Williams, J. Quick, M. Purdue, P. Totaro and Y. Ding (2022), Grand Challenges in the Digitalisation of Wind Energy, Wind Energ. Sci. Discuss. [preprint], https://doi.org/10.5194/wes-2022-29, in review, 2022
A. Clifton, S. Barber, A. Stökl, H. Frank and T. Karlsson (2022), Research challenges and needs for the deployment of wind energy in atmospherically complex locations, Wind Energ. Sci. 7, 2231–2254. https://doi.org/10.5194/wes-7-2231-2022
Y. Ding, S. Barber, F. Hammer (2022), Data-Driven wind turbine performance assessment and quantification using SCADA data and field measurements, Frontiers in Energy Research 10, https://doi.org/10.3389/fenrg.2022.1050342
S. Barber, L. Lima, Y. Sakagami, J. Quick, E. Latiffianti , Y. Liu, R. Ferrari, S. Letzgus, X. Zhang and F. Hammer (2022), Enabling co-innovation for a successful digital transformation in wind energy using a new digital ecosystem and a fault detection case study, Energies, 15(15), 5638. https://doi.org/10.3390/en15155638
G. De Fezza and S. Barber (2022), Optimisation of a multi-element airfoil for application to airborne wind energy, Wind Energ. Sci., 7, 1627–1640. https://doi.org/10.5194/wes-7-1627-2022
S. Barber, J. Deparday, Y. Marykovskiy, E. Chatzi, I. Abdallah, G. Duthé, M. Magno, T. Polonelli, R. Fischer and H. Müller (2022), Development of a wireless, non-intrusive, MEMS-based pressure and acoustic measurement system for large-scale operating wind turbine blades, Wind Energ. Sci., 7, 1383–1398. https://doi.org/10.5194/wes-7-1383-2022
S. Barber, A. Schubiger, S. Koller, D. Eggli, A. Radi, A. Rumpf and H. Knaus (2022), The wide range of factors contributing to Wind Resource Assessment accuracy in complex terrain, Wind Energ. Sci., 7, 1503–1525. https://doi.org/10.5194/wes-7-1503-2022
S. Barber, A. Schubiger, S. Koller, D. Eggli, A. Radi, A. Rumpf, and H. Knaus (2022), New Decision Process for Choosing the Wind Resource Assessment Workflow with the Best Compromise between Accuracy and Costs for a Given Project in Complex Terrain, Energies 15, no. 3: 1110. https://doi.org/10.3390/en15031110
S. Barber, F. Hammer and A. Tica (2022), Improving Site-Dependent Wind Turbine Performance Prediction Accuracy Using Machine Learning, ASME. ASME Journal of Risk and Uncertainty Part B. June 2022; 8(2): 021102. https://doi.org/10.1115/1.4053513
J. Deparday, H. Müller, T. Polonelli and S. Barber (2022), An experimental system to acquire aeroacoustic properties on wind turbine blades, Journal of Physics: Conference Series, Volume 2265, Wind and Wind Farms; Measurement and Testing, https://iopscience.iop.org/article/10.1088/1742- 6596/2265/2/022089
T. Polonelli, J. Deparday, H. Müller, R. Fischer, L. Benini, S. Barber and N. Magno (2022), Aerosense: Long-Range Bluetooth Wireless Sensor Node for Aerodynamic Monitoring on Wind Turbine Blades, Journal of Physics: Conference Series, Volume 2265, Wind and Wind Farms; Measurement and Testing, https://iopscience.iop.org/article/10.1088/1742-6596/2265/2/022074
I. Abdallah, G. Duthé, S. Barber and E. Chatzi (2022), Identifying evolving leading edge erosion by tracking clusters of lift coefficients, Journal of Physics: Conference Series, Volume 2265, Turbine Technology; Artificial Intelligence, Control and Monitoring, https://iopscience.iop.org/article/10.1088/1742- 6596/2265/3/032089
F. Hammer and S. Barber (2022), Transferability of site-dependent wind turbine performance predictions using machine learning, Journal of Physics Conference Series Volume 2151, https://doi.org/10.1088/1742-6596/2151/1/012006
Publications of 2021
G. Duthé, I. Abdallah, S. Barber and E. Chatzi (2021) Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades. Energies, 14, 7262, https://doi.org/10.3390/en14217262
Publications of 2020
S. Barber and H. Nordborg (2020), Improving site-dependent power curve prediction accuracy using regression trees, Journal of Physics Conference Series Volume 1618:062003, https://doi.org/10.1088/1742-6596/1618/6/062003
S. Barber, A. Schubiger, S. Koller, A. Rumpf, H. Knaus and H. Nordborg (2020), Actual Total Cost reduction of commercial CFD modelling tools for Wind Resource Assessment in complex terrain, Journal of Physics Conference Series Volume 1618:062012, https://doi.org/10.1088/1742- 6596/1618/6/062012
S. Barber, M. Buehler and H. Nordborg (2020), IEA Wind Task 31: Design of a new comparison metrics simulation challenge for wind resource assessment in complex terrain Stage 1, Journal of Physics Conference Series 1102:012002, https://doi.org/10.1088/1742-6596/1618/6/062013
Publications of 2018
S. Barber and H. Nordborg (2018), Comparison of simulations and wind tunnel measurements for the improvement of design tools for Vertical Axis Wind Turbines, Journal of Physics Conference Series 1102:012002, https://doi.org/10.1088/1742-6596/1102/1/012002
IET Quicklinks
About us
Collaboration
Events
News (in german only)
Newsletter
Divisons & Employees
Contact
Dr. Sarah BarberIET Institut für EnergietechnikHead of Wind Energy Innovation Division, Lecturer
+41 58 257 42 62sarah.barber@ost.ch