Wo wissen wirkt.

Zukunftsperspektiven
entdecken.

Infoevent besuchen

Vorhersage von Aktienkursen mit tiefen LSTM-Netzwerken

Vorhersagen von Zeitreihen mittels LSTM feiern seit etwa 2016 bedeutende Erfolge. Diese Arbeit beschäftigt sich mit der These, Aktienkurse mittels LSTM vorhersagen zu können. Dabei werden verschiedene Features und Netzwerkstrukturen getestet und die besten Ergebnisse vorgestellt. Die Arbeit behandelt dabei das Beschaffen der Daten, die Vorverarbeitung bis hin zum Grid Search zur Findung der optimalen Parametrisierung des neuralen Netzwerkes. Die erhaltenen Ergebnisse der darauffolgenden Vorhersagen werden mittels Kreuzvalidierung ausgewertet und präsentiert. Die vorhergehende Datenverarbeitung bietet zudem eine detaillierte Übersicht über die Korrelationen der Kurse globaler Finanzmärkte aus rein mathematischer Sicht. Obwohl die Vorhersage in den Ergebnissen nicht signifikant besser als der Zufall ausgefallen ist, wurden Modelle gefunden, welche die Richtung des Kurses in über 70 Prozent der Fälle korrekt vorhersagen können. Dies zeigt, dass durchaus Potential besteht, LSTM Netzwerke als Indikatoren für Kaufentscheidungen im Finanzmarkt einzusetzen.

Studiengang
Systemtechnik
Art der Arbeit
Bachelorarbeit
Verfasser/in
Silvio Jäger
Joel Erzinger
Referent/in
Prof. Dr. Christoph Würsch
Experte
Prof. Dr. Klaus Frick
Institut
Institut für Computational Engineering
Jahr
2019
Projekteingabe:
09.08.2019
zurück