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Abstract

The control software for robotics applications is usually writ-

ten in a low-level imperative style, intertwining the program

sequence and commands for motors and sensors. To describe

the program’s behavior, it is typically divided into di�erent

states, each representing a speci�c system condition. This

way of programming complicates the comprehension of the

code, making changes to the program �ow a tedious task.

Functional Reactive Programming (FRP) o�ers a composable,

modular approach for developing reactive applications. To

examine the strengths and limitations of FRP compared to

the conventional imperative style, the control software for a

robotic artwork was implemented using a form of FRP in the

Haskell programming language. The resulting design sepa-

rates the control of the hardware from the implementation

of its behavior. In addition, state transitions are presented

more clearly, resulting in code that is more understandable,

especially for people with little programming experience.

CCS Concepts: • Software and its engineering → Do-

main speci�c languages; • Applied computing→ Media

arts; Performing arts.
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1 Introduction

The conventional approach to implementing control soft-

ware for robotic art is often based on encoding a state ma-

chine in a low-level imperative language, whereby com-

mands are sent to motors and sensors based on the system’s

current state. This way of programming limits the complexity

of what can be done and leads to challenges in understanding

where state transitions are triggered, making changes to the

code error-prone. Additionally, it seems that programming

in this style is not something that artists are con�dent about

or enjoy.

The main motivation of this work was to explore how

well functional programming would be received by artists:

Given that artists have a strong appreciation of beauty and

elegance, could it be true that the area of art is well suited

to the use of functional programming, which similarly em-

phasizes simplicity, beauty, and elegance? The application of

functional programming for art has a rich history [3, 5, 12].

FRP is a composable, modular alternative for program-

ming reactive applications. In FRP, instead of sending com-

mands directly to motors, a signal is created that represents

the current behavior of the artwork. This signal is dynami-

cally adapted based on inputs such as sensor data and can

be interpreted by various outputs. For example, the signal

can indicate the current positions to which the motors of

the real artwork should move. Alternatively, the positions

of the same signal can be used in a simulation whereby the

Graphical User Interface (GUI) places the elements of the

artwork accordingly.

To illustrate the application of FRP in the programming of

robotic art, a design for the control software of the artwork

Edge Beingswas developed. The concept for this artworkwas

created by Pors & Rao [15] and is currently being realized.

The idea features a composition of di�erent-sized panels

mounted on walls (see Figure 1). Over time, round, black

silhouettes of creatures move slowly over the edges of the

panels.

Close observation reveals that there are social constella-

tions among the beings. They belong to di�erent, overlap-

ping groups, of which only one can be in view at a time. Each

group has a suppressor, displacing weaker groups to make

room for its own group. If the suppressor is weaker than the

currently visible group, it must retreat.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0
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Figure 1. A sketch of Edge Beings by Søren Pors [15].

© Søren Pors, Pors & Rao.

When viewers closely approach the artwork, they observe

the beings becoming aware of their presence. In response,

the beings behave more nervously, refraining from emerging

fully. Instead, they peek brie�y over the edge before hiding

again. As soon as no one is too close anymore, the creatures

resume their normal behavior.

A special feature of Pors & Rao’s artworks1 is the lifelike

appearance of the creatures’ movements. To achieve this,

they develop complex behavioral algorithms, which are ne-

glected in this paper to maintain focus on the concepts of

FRP and its signi�cance and implications. Instead, a simpli-

�ed design was created and implemented once in imperative

style and once in FRP style using Yampa [6] (see Sections

3.1 and 3.2). Section 2 provides an initial introduction to the

concept of FRP and the use of Yampa. The resulting code

design in FRP was discussed with the artists (see Section 3.3).

2 FRP and Yampa

This section provides an overview of the key concepts in FRP

and Yampa [6] that are relevant to understand the content

of this paper.

2.1 FRP

FRP is a style of programming for implementing reactive

systems using the principles of functional programming.

Reactive systems are systems whose behavior depends on

the occurrence of external events. Functional programming

is de�ned as programming using pure (mathematical, side-

e�ect free) functions and values elegance, algebraic compo-

sitionality and mathematical precision over quick wins in

speed, space and size of user base. Therefore, FRP proposes a

declarative approach to implement the behaviors of reactive

systems.

A simpli�ed example of how to think of FRP is a spread-

sheet. A spreadsheet consists of cells that can contain values

1An insight into the artworks and working methods of Pors & Rao can be

found here [4, 16].

or functions. For example, a function can check whether

the value in a particular cell is larger than the value in an-

other particular cell. When programming the function, the

user describes the dependency of the result on the two cells

(result = cell1 > cell2). If the value in a cell is changed,

the result is automatically updated. The refreshing is done

by the spreadsheet program. In imperative programming,

the refreshing of the values has to be speci�ed by the pro-

grammer [1, Chapter 1].

In 1997, the concept of FRP was proposed by Conal Elliott

and Paul Hudak [2], and implemented in the Fran system.

Fran is a domain-speci�c language (DSL) for animations in

Haskell. Fran makes it possible to separate the presentation

of animations from their descriptions.

Two years later, these concepts were applied to

Frob [13], a DSL for use in robotic systems. Frob hides the

details of low-level robot programming and makes program-

ming more hardware independent. Unlike Fran, Frob must

also manage hardware control, which adds an additional

layer of complexity.

2.2 Yampa

Yampa is an FRP implementation inspired by Fran and Frob.

Yampa has been used in various areas such as robotics, GUI

applications, and games [6]. For instance, Pembeci, Nilsson,

and Hager [11] have built vision-guided, semi-autonomous

robots with FRP using Yampa.

2.2.1 Signals and Events. The most important concepts

of FRP in Yampa are Signals and Events. A Signal is a

continuous, time-varying value. It can be understood as a

mapping Time -> a of a value of type Time to a value of

type a.

Figure 2. An example of an integer Signal that changes its

value over time.

Figure 2 visualizes an example of an integer Signal. A

Signal always contains a value at each point in time. An

FRP program describes how the value of a Signal changes

in response to events.

A stream of events is modeled by Signal (Event b) in

Yampa, which is a Signal that yields either nothing or an

Eventwith a value of type b. The value of type b is generated

each time the event occurs. For example, the current position

of the mouse can be attached to the event. A visualization
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of an event stream Signal (Event Int) can be found in

Figure 3.

Figure 3. An example of a Signal that yields nothing or an

Event containing a value of type Int.

The concept of Signal enables the writing of programs

that have time and space leaks. The reason for this is ex-

plained in [6, 9, 14]. Yampa solves this problem by not al-

lowing Signals as �rst-class values. The value contained in a

Signal can only be modi�ed using signal functions. These

cannot be constructed directly, but only using a set of given

combinators. The given combinators ensure that time and

space leaks are avoided. In Yampa, this concept was imple-

mented with the help of arrows, a generalization of monads

proposed by John Hughes [7].

A signal function SF a b is an instance of the Arrow class

and can be thought of as a mapping Signal a ->

Signal b of Signals to Signals.

2.2.2 Example. To better understand how signal functions

work, this section provides a small example. It creates an

animation of a straightforward motion of an object. The an-

imation can be started and controlled using mouse clicks.

Depending on whether the left or the right button is clicked,

the current speed is slow or fast. The result is a signal that

represents the position. Its value should be zero at the begin-

ning and after a mouse click, increase with the corresponding

speed. The resulting signal can be used to create an anima-

tion of an arbitrary object as shown in Figure 4.

Figure 4. Animation of a star depending on the position pos.

The direction is determined by the de�nition of the coordi-

nates in the GUI. E.g. the coordinates on the left correspond

to a movement along the x-axis, whereas those on the right

result in a movement along the y-axis.

Creation of a Position Signal. The example starts with

the creation of a signal function with constant to represent

the velocity. It is of type constant :: b -> SF a b and

creates a signal function providing an output signal with a

constant value.

1 type Velocity = Double

2

3 velocity :: Velocity -> SF () Velocity

4 velocity v = constant v

To calculate the position based on a constant velocity, the

value of the input signal must be integrated with the signal

function integral (see Figure 5).

Figure 5.Visualization of integral accumulating a constant

input value over time.

To pass the output signal of velocity to the

integral signal function, as in Figure 6, a combinator is

needed. One possibility to compose two signal functions is

the operator >>>.

(>>>) :: SF a b -> SF b c -> SF a c

Now the function positionSF can be de�ned that will

increase the value of the resulting signal steadily. This can

be interpreted as a movement with a constant speed v.

1 type Position = Double

2

3 positionSF :: Velocity -> SF () Position

4 positionSF v = velocity v >>> integral

Figure 6.Visualization of positionSF. The arrow represents

the signal that is modi�ed by the signal functions velocity

and integral.

Start on Mouse Click. We want the movement to start

when a mouse click occurs. So, the velocity should �rst be

zero. After the mouse click the velocity should be set to the

slow speed (here ten). For this, the function hold is needed.

This function receives a start value as a parameter and cre-

ates a signal function from it. This signal function takes an

event stream as input and produces an output signal. In the

beginning, the output signal holds the start value. When an

event occurs, the value is replaced by the value of the event.

4



FARM ’24, September 2, 2024, Milan, Italy Eliane Irène Schmidli and Farhad Mehta

hold :: a -> SF (Event a) a

The output signal of hold should indicate the new speed

after the click. For this, the velocity needs to be attached to

the event using the function tag.

tag :: (Event a) -> b -> (Event b)

Figure 7 visualizes the transformation of the event stream

to the position signal. First, the input signal yields noth-

ing and hold produces a signal containing the value zero.

Therefore, the output signal of integral also indicates zero.

When a mouse click event occurs, ten is attached to it, and

hold changes the value accordingly to ten. After the change,

integral starts increasing the value of the position.

Figure 7. Visualization of positionSF transforming the

event stream to the position signal. Note that click is of

type Event().

The new version of positionSF receives the mouse event

of type Event() as an input signal. To simplify the readability

of the implementation, the arrow notation is used here. An

introduction to the arrow notation can be found in [8].

1 positionSF' :: SF (Event ()) Position

2 positionSF' = proc click -> do

3 v <- hold 0 -< tag click 10

4 pos <- integral -< v

5 returnA -< pos

The extracted value of the input signal is click of type

Event(). The event is tagged with ten and is passed to the

signal function (hold 0). This produces an output signal

containing the current velocity. The velocity v can be passed

to the function integralwhich produces the output position

pos. With returnA the value pos is wrapped in the outgoing

signal.

Switch between Speeds. To switch between two di�erent

speeds depending on the left and right click of themouse, two

event streams must be used. This can be realized by changing

the input signal of programSF' to the type

(Event(), Event()). Then a di�erent speed is tagged to

each of the two click events. To use hold, both event streams

have to be merged into one. For this, a decision must be

made as to which of the two events has priority when both

occur simultaneously. With rMerge, the right event is always

preferred as in Figure 8.

rMerge :: (Event a) -> (Event a) -> (Event a)

Here is the new implementation of positionSF', where

lbp corresponds to a left mouse click, and rbp to a right

mouse click. Each time the left mouse button is pressed, v

is changed to the value ten, and when the right button is

pressed to the value twenty.

Figure 8. Visualization of rMerge. It merges the two event

streams preferring the events from the second stream.

1 positionSF'' :: SF (Event () , Event ()) Position

2 positionSF'' = proc (lbp , rbp) -> do

3 let slowEv = tag lbp 10

4 let fastEv = tag rbp 20

5 v <- hold 0 -< rMerge slowEv fastEv

6 pos <- integral -< v

7 returnA -< pos

3 Design of Edge Beings

To illustrate the di�erences in applying imperative program-

ming versus FRP using Yampa, the following chapters present

the behavior of a being in both approaches. The implemen-

tation of the Edge Beings artwork shown here is simpli�ed

to illustrate the concepts without going into �ne details. In

particular, the beings are currently assigned to a single group

instead of several groups, and their movement patterns are

not as complex.

3.1 Imperative Style

In imperative programming, the translation of a problem

description into code often involves the creation of a state

machine. In the context of the Edge Beings artwork, a state is

managed for each being. Themain loop adjusts these states at

each iteration based on events that have occurred. The code

execution for each being is determined by its current state,

with the following code specifying actions for each state per

iteration. Figure 9 illustrates a state machine representing

the code.

1 def step():

2 current_time = time.time()

3

4 if state == HIDE:

5 motor.go_to_position (0)

6 set_time_next_move(wait_before_peek)

7 state = PEEK

8

9 elif state == PEEK:

10 if (current_time >= time_next_move):

11 motor.go_to_position(peek_pos)

12 set_time_next_move(wait_before_stand)

13 state = WAIT_PEEK

14

15 elif state == WAIT_PEEK:

16 if (current_time >= time_next_move):

17 if (not motion and is_stronger_suppressor):

5
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18 suppressor_events.insert(suppressor_rank)

19 state = STAND

20 elif (is_allowed_to_go_out):

21 state = STAND

22 else:

23 state = HIDE

24

25 elif state == STAND:

26 set_time_next_move(out_time)

27 motor.go_to_position(stand_pos)

28 state = WAIT_STAND

29

30 elif state == WAIT_STAND:

31 if (current_time >= time_next_move):

32 if (is_suppressor):

33 current_group = 0

34 state = HIDE

Figure 9. State Machine representing the state transitions

for a being of the simpli�ed Edge Beings implementation.

In the 'Hide' state, a being’s motor moves to the hiding

position. After the transition to the 'Peek' state, the being

waits and moves to the peeking position after a speci�ed

time, followed by waiting again in the 'Wait_Peek' state.

Subsequently, the program checks if the being is permitted

to emerge completely or if it must hide again based on the

following conditions: If the motion sensor detects a visitor

too close to the artwork, no being is allowed to move to the

standing position. Otherwise, the code checks if the being is

a suppressor. If not, the being can only creep out if it belongs

to the currently permitted group. If the being is a suppressor,

it can emerge only if it outranks the current group. In this

case, the being registers for the suppressor event prompting

the current group to hide.

In the 'Stand' state, the motor moves the being to the

standing position. The being thenwaits in the 'Wait_Stand'

state until eviction or the expiration of its allocated time. In

the second case, suppressors reset the current group to zero

before retreating, enabling other suppressors to emerge.

The code of the state machine only shows certain state

transitions. For example, it is not apparent that all beings

are set to the 'Hide' state when a motion event occurs.

For this insight, examining the event handling in the main

loop is necessary. The events are gathered in a list which

is processed with each main loop iteration. The function

handle_events invokes the handlers for the current events.

1 def handle_events(event_list):

2 handle_suppressor_events(event_list)

3

4 motion_event = last_motion_event(event_list)

5 if is_motion_event(motion_event):

6 handle_motion_events ()

7

8 if is_no_motion_event(motion_event):

9 handle_no_motion_events ()

The function handle_motion_events sets all

beings to the 'Hide' state, while the function

handle_suppressor_events manages the suppressors that

were previously registered in the 'Wait_Peek' state. The

function determines the current group by the suppressor

with the highest rank. Then, beings beyond the peeking po-

sition belonging to the previous group are set to the 'Hide'

state.

The sequence of event handler calls in the function

handle_events is critical and depends on state changes

within the event handlers. To illustrate this, the bad handling

of motion events in the following code can be considered.

1 def handle_events_wrong(list):

2 # ...

3 motion_event = has_motion_event(list)

4 if motion_event:

5 handle_motion_events ()

6

7 no_motion_event = has_no_motion_event(list)

8 if no_motion_event:

9 handle_no_motion_events ()

Instead of handling only the last movement event, both

event handlers are called here. If the sensor emits the three

events Motion, No_Motion, and Motion, the bad implemen-

tation would inaccurately set the variable motion to False.

The beings are allowed to emerge even if the last event sig-

ni�es that a visitor is indeed present in the area.

Therefore, understanding the complete dependencies be-

tween states and events is crucial to making changes to this

imperative implementation. Failure to do so may result in

unintended side e�ects. The next chapter proposes a solution

to this using FRP in Yampa.

3.2 Design in Yampa

In FRP it is possible to separate the behavior of the beings

and the instructions given to the motors. The behavior is

de�ned within a signal function, generating a signal that

indicates the current positions of the beings. This signal

can be consumed by motors that move to the corresponding

positions. For instance, if a being is instructed to wait, the

same position is repeatedly sent during this interval, causing

the motors to remain stationary.

The signal function dynamically changes the behavior

and therefore the positions of the beings based on the input

signals. For instance, when the motion sensor near the art-

work detects someone in its proximity, it sends a message

to the FRP service. This message is then integrated into the

6
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input signal of the ongoing signal function and used to gen-

erate an event. This event triggers a change in the behavior

leading to a change in position and motor movement. Then,

the viewer of the artwork can observe how the �gures are

hiding. The beings resume normal movement as soon as the

viewer moves out of the range of the sensor.

3.2.1 External Interface. All the panels’ motors and the

sensors are orchestrated by a Python framework running

on a Raspberry Pi. Simultaneously, the FRP implementation

is launched on the same Raspberry Pi. Sockets are used to

establish a connection between the Python service and the

Haskell service, enabling the exchange of input and output

information.

This design makes it possible to separate the description

of the beings’ behavior from the representation of the output.

Modi�cations to the behavior therefore become immediately

visible without the need to edit the motor controls. Further-

more, the Python service can be replaced with an alternative

solution. Speci�cally, a simulation was developed for the

Edge Beings artwork. This enables users to visually observe

the e�ects of modi�cations in the program without access to

the physical artwork hardware. Figure 10 shows a screenshot

of the GUI from the resulting application.

The simulation interfaces with the Haskell service via

the same socket connection. Keyboard inputs emulate the

motion sensor, while the GUI adjusts the coordinates of the

beings instead of controlling physical motors. The shift in

positions is perceived by the viewer as an animation.

Figure 10. GUI of the Edge Being simulation

The following sections provide a deeper insight into the

implementation of the beings’ behavior.

3.2.2 Execution. The behavior of the beings within the

Haskell service is described in a signal function. In Yampa,

this function can be executed inde�nitely using the

reactimate function, enabling the reception of new inputs

and the processing of outputs.

1 reactimate :: Monad m

2 -- Initialization action

3 => m a

4 -- Input sensing action

5 -> (Bool -> m (DTime , Maybe a))

6 -- Output processing action

7 -> (Bool -> b -> m Bool)

8 -- Signal function

9 -> SF a b

10 -> m ()

Further information about the usage of the

reactimate function can be found in [10]. For Edge Beings,

the function is used as follows:

1 type Pos = Double

2 type Vel = Double

3 edgeBeingsBehavior :: SF (Maybe Int) [Pos]

4

5 reactimate

6 (initializationAction)

7 (\_ -> inputSensingAction)

8 (\_ positions -> outputProcessingAction positions)

9 (edgeBeingsBehavior)

The edgeBeingsBehavior function �rst interprets the

motion sensor data and transforms it into an event stream

of type SF (Maybe Int) (Event(), Event()). Then the

edgeBeingsBehavior function starts the behavior signal

function for each being and passes the motion event stream

as input. In the absence of numeric values from the motion

sensor, no event is generated. If a person is detected in the

proximity of the artwork, the left event is �red; conversely,

the right event is �red if there is no person close.

Each being has its own motion parameters, causing the

beings tomove di�erently from each other. These parameters

are stored in instances of the Being data type:

1 type Time = Double

2 type Rank = Int

3 type Group = Int

4 type Mov = (Pos , Vel)

5

6 data Being = Being

7 { waitToPeek :: Time ,

8 waitToStand :: Time ,

9 waitToGoBack :: Time ,

10 hiding :: Mov ,

11 peeking :: Mov ,

12 standing :: Mov ,

13 socialGroup :: Group ,

14 rank :: Rank -- 0 if not suppressor

15 }

Each being is assigned to a group, and if it belongs to the

suppressors, a corresponding rank is determined. The rank

of the suppressor corresponds to the priority of its group,

enabling it to displace lower suppressors and their groups.

To allow for dynamic changes in the beings’ movement pa-

rameters andwaiting times, the list of Being instances is inte-

grated into the input signal. Within the function

edgeBeingsBehavior, each being receives its own instance,

coupled with sensor events.

3.2.3 Beings’ Behavior. The beings exhibit two distinct

patterns of behaviors: normal social behavior and a disturbed

state. During social behavior, the beings appear in groups,

with weaker groups being driven away by the suppressors of

more powerful groups. If the viewer approaches the artwork

7
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too closely, a shift to the disturbed behavior is triggered. As

soon as the viewer reverts to a more distant position, the

beings resume their normal social behavior.

This procedure can be represented in Yampa as follows.

1 type StartPos = Pos

2 type Events = (Event () , Event ())

3

4 socialBehavior , disturbedBehavior

5 :: [StartPos] -> SF [Being] [Pos]

6

7 motionEv , noMotionEv :: SF Events (Event ())

8

9 behavior

10 :: [StartPos]

11 -> SF ([Being] , Events) [Pos]

12 behavior startPos =

13 socialBehavior startPos `doUntil' ` motionEv

14 `switch ` \pos ->

15 disturbedBehavior pos `doUntil' ` noMotionEv

16 `switch ` \pos -> behavior pos

First, the socialBehavior signal function is executed, un-

til an event in the motionEv event stream triggers a switch

to the signal function disturbedBehavior. An event in the

noMotionEv event stream leads to a switch back to the ini-

tial behavior. The switch function enables the transition

between these behaviors and is de�ned by the following

type signature:

switch

:: SF a (b , Event c)

-> (c -> SF a b)

-> SF a b

In this signature, the �rst parameter represents the signal

function initially executed, combined with the event stream

that triggers the switch. As soon as an event of type Event c

occurs, the signal function in the second argument is invoked.

The value of the event serves as input for creating the new

signal function, allowing for adaptive behavior transitions.

In Yampa, the signal function following the switch begins

afresh from time zero [6]. In the context of Edge Beings, the

output positions are therefore reset to zero after each switch.

To avoid this, the doUntil' function retrieves the position

values from the running signal function and attaches them

to the event from the event stream. These positions are then

passed to the new signal function, allowing it to commence

from the speci�ed positions.

doUntil'

:: SF a b

-> SF a' (Event ())

-> SF (a , a') (b , Event b)

3.2.4 Disturbed Behavior. When the disturbed behavior

is invoked, individual signals are generated for each being

using the disturbedBeing function.

1 integrate :: StartPos -> SF Vel Pos

2

3 disturbedBeing :: StartPos -> SF Being Pos

4 disturbedBeing startPos = proc state -> do

5 rec

6 let input = (state , noGroup)

7 v <- check -< (input , pos)

8 pos <- integrate startPos -< v

9 returnA -< pos

10 where

11 noGroup = 0

Figure 11. Visualization of disturbedBeing transforming

the input signal into a position signal.

This function calculates the position of the being by inte-

grating the current velocity, determined by the check func-

tion. If the being is in motion with a speci�c velocity, the

position is increased accordingly. When the being stops, the

velocity becomes zero, and the position remains constant. To

stop at a designated target position, the calculated position

is fed back to the check function (see Figure 11). To enable

this, the keyword rec is used in the arrow notation.

The disturbedBeing signal function shares some func-

tions with the signal function de�ning the normal behavior.

In the latter, an input signal denotes the current group al-

lowed to be present. As groupmembership does not in�uence

the disturbed behavior, the current group is set to zero using

the variable noGroup.

The check function describes the movement behavior of

the disturbed being:

1 type CurrPos = Pos

2 type Input = ((Being , Int) , CurrPos)

3

4 check :: SF Input Vel

5 check = goHiding

6 `switch ` (\par -> waitBeforePeek par

7 `switch ` (\_ -> goPeeking

8 `switch ` (\par -> waitBeforeStand par

9 `switch ` const check)))

At the beginning, the being hides, then it waits for its in-

dividual waiting time before moving to the peeking position

and waiting there again. The function is called recursively

to repeat the behavior from the beginning.

During each movement, a signal indicating the current

velocity is generated. As an example, the implementation of

goPeeking is shown here:

1 moveOut :: (Being -> Mov) -> SF Input Vel

2 arrivalPeeking :: SF Input (Event Time)

3

4 goPeeking , goHiding

5 :: SF Input (Vel , Event Time)

6 goPeeking =

7 moveOut peeking `doUntil ` arrivalPeeking

Using doUntil, the signal is combined with the event

stream, producing an event as soon as the target position

is reached. The doUntil function uses the Yampa operator

(&&&) for this purpose.

8
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1 (&&&) :: SF a b -> SF a b' -> SF a (b , b')

2

3 doUntil

4 :: SF a b

5 -> SF a (Event c)

6 -> SF a (b , Event c)

7 doUntil behavior event = behavior &&& event

When an arrival event occurs, the current waiting time is

retrieved from the Being input signal and is tagged to the

generated event. This time value is then used to create a

wait signal function. These functions operate similarly to

the movement functions, producing a signal indicating zero

speed. This signal is then combined with the event stream,

which generates an event after the speci�ed time has elapsed.

waitBeforePeek , waitBeforeStand

:: Time -> SF Input (Vel , Event ())

3.2.5 Normal Behavior. If no visitor stands in close prox-

imity to the artwork, the beings exhibit their normal social

behavior, with distinct actions initialized for suppressors and

other beings. A signal of type Group signi�es the current

group and is used as input by normal beings. If a suppres-

sor with a higher rank than the current group appears, it

replaces the value of the group signal with its rank.

Normal Being. The normalBeing signal function is started

for non-suppressors. The function operates similarly to the

disturbedBeing signal function, with the di�erence that

its input signal contains the current group allowed to be

outside.

1 normalBeing :: StartPos -> SF (Being , Group) Pos

2 normalBeing startPos = proc input -> do

3 rec

4 v <- normalBehavior -< (input , pos)

5 pos <- integrate startPos -< v

6 returnA -< pos

If the current group aligns with that of the being, it may

move out to the standing position. Otherwise, it behaves

similarly to the disturbed behavior. This procedure can be

seen in the normalBehavior function.

1 currentGroupEvents :: SF Input (Event ())

2 notCurrentGroupEvents :: SF Input (Event ())

3

4 normalBehavior :: SF Input Vel

5 normalBehavior =

6 check `doUntil ` currentGroupEvents

7 `switch ` \_ ->

8 (creepOut `doUntil ` notCurrentGroupEvents)

9 `switch ` const normalBehavior

When the event stream currentGroupEvents generates

an event, the behavior switches from check to creepOut. If

a suppressor displaces the group, the input stream’s group

changes, and notCurrentGroupEvents generates an event,

restarting the normalBehavior recursively.

The creepOut function has a similar structure to the

check function. However, after reaching the peeking po-

sition, the being moves to the standing position.

1 waitBeforeGoBack

2 :: Time

3 -> SF Input (Vel , Event ())

4 goStanding :: SF Input (Vel , Event Time)

5

6 creepOut :: SF Input Vel

7 creepOut = getWaitingTime

8 `switch ` (\par -> waitBeforePeek par

9 `switch ` (\_ -> goPeeking

10 `switch ` (\par -> waitBeforeStand par

11 `switch ` (\_ -> goStanding

12 `switch ` (\par -> waitBeforeGoBack par

13 `switch ` (\_ -> goHiding

14 `switch ` const creepOut))))))

To retrieve the wait parameter for waitBeforePeek at the

start of creepOut, the getWaitingTime step is introduced.

getWaitingTime :: SF Input (Velocity , Event Time)

It generates an event immediately and reads the required

waiting time from the Being state. This time value is then

tagged to the event and passed to the waitBeforePeek func-

tion.

Suppressor. The suppressor signal function is initiated

for each suppressor.

1 suppressor

2 :: StartPos

3 -> SF (Being , Group) (Pos , Rank)

4 suppressor startPos = proc input @( state , _) -> do

5 rec

6 (v , rank') <- supBehavior -< (input , pos)

7 pos <- integrate startPos -< v

8

9 isGoingOut <- goingOut -< (v , pos , state)

10 let rank = if isGoingOut then rank' else 0

11

12 returnA -< (pos , rank)

The distinct feature of the suppressor function is that

its output signal contains beside the position also the rank,

indicating zero unless the suppressor is visible. The ranks

of the apparent suppressors are compared, with the highest

determining the current group.

Similar to the non-suppressors, the supBehavior function

de�nes the movement of the suppressor.

supBehavior :: SF Input (Vel , Rank)

The supBehavior function follows a similar pattern to

the other beings’ behavior but sets the rank' accordingly.

During check, the output rank' is set to zero and during

creepOut, it corresponds to the rank of the suppressor.

At the end of creepOut, the suppressor withdraws. The

signal function goingOut ensures that the other beings can

already emerge when the suppressor is retreating.

goingOut :: SF (Vel , Pos , Being) Bool

To achieve this, goingOut indicates False when the sup-

pressor is moving backward. Therefore, the output signal of

the suppressor function indicates a rank of zero.

9
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3.2.6 Comparison to State Machine. In contrast to the

state machine implementation, functions such as behavior,

normalBehavior, or creepOut o�er a more intuitive repre-

sentation of the program �ow and a better understanding of

what reactions are triggered by certain events.

To highlight the advantages of this implementation over

a state machine, the introduction of a restart event to the

program is considered. In the state machine, all beings must

be set to the correct state when the event occurs. This re-

quires careful placement of the event handling to prevent

states from being overwritten by other events afterward.

These modi�cations require familiarity with the code of the

state machine and the event handler. To enable an immediate

restart, additional complexity is introduced by interrupting

motors in motion.

In natural language, the problem can be described as ex-

ecuting the behavior until a restart event occurs and then

restarting from the beginning. In Yampa, this description can

be represented elegantly in the code, as the

restartBehavior function demonstrates.

1 type Events' = (Events , Event ())

2

3 restartEvent

4 :: SF ([ BeingState] , Events') (Event ())

5

6 startPos :: [Pos]

7

8 restartBehavior

9 :: SF ([ BeingState] , Events') [Pos]

10 restartBehavior =

11 (behavior startPos `doUntil ` restartEvent)

12 `switch ` const restartBehavior

It is only necessary to include the event in the Events

type of the input signal and to ensure that behavior starts

with the goHiding function. Other events and the deeper

implementation of behavior do not need to be considered.

Implementing changes in this manner reduces the likelihood

of errors.

3.3 Interaction with Artists

The design for the control software was developed in close

cooperation with the artists. Their developers normally pro-

gram the artworks in the state machine style as described

in Section 3.1. It is therefore not surprising that the artists’

written description of the behavioral logic was not a prob-

lem description in natural language. Instead, it exhibited a

structure that is suitable for programming a state machine.

When the implementation in FRP reached the state de-

scribed in this paper, both versions of solutions were pre-

sented to one of the artists. The explanation of the code was

accompanied by the illustration of the state machine shown

in Figure 9 and similar graphics to Figure 11. The implemen-

tation in Yampa was convincing with its comprehensible

state transitions. The artist recognized the potential to make

parts of the programmed algorithm easier to understand for

people without programming knowledge. This, in turn, of-

fers a certain degree of clarity concerning the developers’

understanding of the problem.

It is important to mention while Yampa facilitates com-

prehensible code, the possibility of producing poorly written

and unreadable code still exists. Therefore, in the current

state, knowledge of Haskell and Yampa is required to create

or make larger modi�cations to the code. But the improved

comprehensibility allows artists to be more involved in this

process. It is also conceivable that artists could make minor

changes to existing code themselves. However, this would

require implementing an interface or code convention that

hides certain details.

Further advantages of using FRP in art can be seen in the

Edge Beings simulation. The simple addition of the simula-

tion allowed the artists to easily experiment with various

movement parameters for the creatures. To facilitate this

process, sliders were integrated into the GUI for adjusting

the values in the input signal Being. The application of FRP

enables the dynamic adaptation of values in a signal and thus

allows immediate modi�cations to the beings’ movements.

4 Conclusion

The implementation using FRP o�ers several advantages.

The modular architecture makes it easier to supplement the

implementation with a simulation, enabling independent

testing of code changes without the need for hardware inter-

action. The use of Yampa provides clear and comprehensible

state changes that can also be understood by people with

little programming experience. In addition, the real-time re-

sponse to alterations in movement parameters is a valuable

addition to the simulation’s functionalities.

The implementation in Yampa requires prior knowledge

of Haskell, including some advanced concepts like Arrows.

Furthermore, getting started with FRP can be challenging

due to varying de�nitions and frameworks based on di�erent

approaches. In contrast, employing a state machine approach

is less complex and more standardized, aligning with the

general education of programmers.

Although the initial design and major code changes still

require knowledge of Haskell and Yampa, the potential for

better collaboration and minor customization by the artists

themselves was recognized. This suggests that functional

programming, with the further development of user-friendly

interfaces, could improve the state of the art in the program-

ming of robotic art by allowing artists to better collaborate

with programmers, and in the future, possibly bring program-

ming closer to an artist’s inherent need to express beauty

and elegance in their work.
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