
Student

Yanik Kuster

Hardware-Accelerated Liquid Neural Network on an
Adaptive System-on-a-Chip

Own presentment

Fig. 1. The Kria KV260 platform is connected to an oscilloscope
to measure the execution times.

Source: https://www.nature.com/articles/s42256-022-00556-7

Fig. 2. LTC RNN's output compared to its CfC version. The CfC
has been generalised to the equation in Fig. 3.

Based on: https://www.nature.com/articles/s42256-022-00556-7
Fig. 3. The equations specify the dynamics of the RNN's states. The block diagram shows the network structure of a CfC.

Eastern Switzerland University of Applied Sciences | Project Theses 2024 | Master of Science in Engineering | Technik und IT

Data Science, Electrical
Engineering

Subject Area

Prof. Dr. Andreas
Breitenmoser

Advisor

Introduction: A recent paper by Ramin Hasani et al.
introduced a new type of continuous-time recurrent
neural network (CT RNN) called Liquid Time-
Constant Recurrent Neural Network (LTC RNN). A
CT RNN defines its states as a system of first order
ordinary differential equations (ODEs) whose
dynamics is governed by the time constant. An LTC
RNN goes further by allowing the time constants to be
dependent on the current state (Fig. 3). Thus, an LTC
RNN can change its dynamics depending on the state
of the system, which results in more powerful
neurons. According to Ramin Hasani, LTC RNNs
have improved performances in time-series prediction
even if irregularly sampled. Due to the promising
properties of LTC RNNs, it is of our interest to bring
these networks to the edge device.

Approach: The project's goal is to implement an LTC
RNN on an adaptive system-on-a-chip (ASoC),
namely the Kria KV260 platform (Fig. 1). Solving the
system of ODEs of an LTC RNN is computationally
demanding. Ramin Hasani derived an approximation
for the closed-form solution with which a so-called
closed-form continuous-depth network (CfC) was
designed (Fig. 2 and 3). The CfC has been chosen for
the implementation since it omits solving the system
of ODEs. For comparison, two different system
implementations were realized: One using only a
single core of the Cortex-A53 processing system
@1.333 GHz and the other making use of the FPGA
fabric @214 MHz.

Conclusion: The CPU implementation uses floating
point numbers, which takes 3.49 ms to compute. The
FPGA implementation uses a custom quantization
based on power-of-two scale quantization with which
the complete network is computed in 22.5 us. This
means that a speedup in the order of 155 has been

achieved. The cost of this speedup shows in the
degrading mean squared error (MSE), which
increased to 1.58 from the baseline of 0.659 given by
the TensorFlow model. There are multiple ways to
reduce the MSE, e.g., by increasing the model
resolution or by computing parts of the model on the
CPU instead of the FPGA. Additionally pruning the
model and exploiting the resulting sparse
representation could improve the speedup further.

