## **Cryptographic Discovery**

| Students                                                            | Initial Situation: The imminent next generation of<br>computers will rely on quantum computing. This<br>poses a threat to many of the cryptographic<br>algorithms in use today. Quantum computers will be<br>able to break the mathematical primitives of many of<br>the cryptographic algorithms in the not-so-distant<br>future                                                                                                                                                                                                                                                 | demonstrates possible wa<br>and used cryptographic al<br>standardized CBOM forma<br>cryptographic assets. This<br>uploaded in the extended<br>visualize the location of th |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Petra Heeb                                                          | A transition from existing cryptographic algorithms to<br>newer, quantum-safe algorithms such as CRYSTALS-<br>Dilithium and CRYSTALS-Kyber is therefore of high<br>importance for enterprises, to maintain a secure<br>environment. But where are the new quantum-safe<br>algorithms to be applied?                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |
| Lara Gubler                                                         | The goal of this student research work is to find a way<br>to identify used cryptographic algorithms on a system<br>so that the engineers can change insecure<br>cryptographic algorithms to quantum-safe<br>cryptography. In particular, we focus on the challenge<br>to identify and model the cryptographic assets, which<br>are in use within the network of an enterprise. This<br>involves scanning and collecting data from a variety<br>of sources, cataloging assets and building an<br>understanding, of how the collected data artifacts are<br>related to each other. | Input and output matching CBC<br>Own presentment                                                                                                                           |
| Christopher Hilfing                                                 | Approach / Technology: In this thesis, the newly<br>written scanner, which crawls the system<br>autonomously for information, will be used for the<br>detection and cataloging of cryptographic assets.<br>An evaluation of various open-source scanners was<br>conducted, regarding possible implementation in this<br>project. Osquery and YARA were promising<br>candidates, regarding how they could be used for the<br>challenge at hand.                                                                                                                                    | CRC16_table → · · · · · · · · · · · · · · · · · ·                                                                                                                          |
|                                                                     | As a solution, the Python-based command line tool<br>named Crypto-Scanner based on YARA rules was<br>implemented during this thesis. The output of the<br>scanner must be converted into a CBOM standard in<br>CycloneDX format. Therefore, a Python-based<br>command line tool called CBOM generator was<br>developed using the CycloneDX python library.                                                                                                                                                                                                                        | C  C  C  C  C  C  C  C  C  C  C  C  C                                                                                                                                      |
|                                                                     | Furthermore, Dependency Track, an existing<br>methodology for visualizing SBOM standards, was<br>extended so that CBOM formats, which are extended<br>SBOM formats, can be utilized for the visualization of<br>the existing cryptographic inventory.<br>Dependency Track is an open-source tool that has<br>been used in trials for similar challenges and has<br>proven to be a great asset for the analysis of the                                                                                                                                                             | High-Level Cryptographic Disco<br>Own presentment                                                                                                                          |
| Advisor<br>Prof. Dr. Nathalie<br>Weiler<br>Subject Area<br>Security | SBOM and also the CBOM standard.<br>Result: The result of our student research work<br>demonstrates the potential of static scanners in the<br>area of cryptographic discovery. With this work, a<br>basis for further research in this area has been                                                                                                                                                                                                                                                                                                                             | Scans<br>Bir Files<br>Scan Results                                                                                                                                         |
| Project Partner<br>IBM Research - Zürich,<br>Rüschlikon             | created, which aids in the first step toward the<br>transition to quantum-safe algorithms. This result                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Crypto-Scanner CBOM Gene                                                                                                                                                   |
| Oost                                                                | Eastern Switzerland University of Applied Sciences   Student Research Projects 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 023   Bachelor of Science OST   Informatik                                                                                                                                 |

demonstrates possible ways to identify implemented and used cryptographic algorithms and creates a standardized CBOM format from the identified cryptographic assets. This CBOM format can be uploaded in the extended Dependency Track to visualize the location of the algorithm implementation.





## Dependency Track Own presentment

|  |                                                                                                                                                                          |                 |             |                       |   |             |   |                        |        |                    |     |                |          | ۲ |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|-----------------------|---|-------------|---|------------------------|--------|--------------------|-----|----------------|----------|---|
|  | 4                                                                                                                                                                        | Example Project |             | • • •                 | • | ) 💿 (       |   |                        |        |                    |     |                |          |   |
|  | Vershools<br>K Derrores & Components () # Derrores () & Dependency Couple () # Audit Valuesabilities () # Depind Pendicitions () & Policy Valuesons<br>& Opponensents () |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  |                                                                                                                                                                          |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  |                                                                                                                                                                          |                 |             |                       |   |             |   |                        |        |                    |     | ٥              | <b>.</b> |   |
|  | •                                                                                                                                                                        | Crypto Assets   | ♦ Version ♦ |                       |   | Primitive 1 | ÷ | Quantum Security Level | Classi | cal Security Level | ¢ N | list QSC Level |          |   |
|  | •                                                                                                                                                                        |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  | -                                                                                                                                                                        |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  | •                                                                                                                                                                        |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  | -                                                                                                                                                                        |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  | -                                                                                                                                                                        |                 |             |                       |   |             |   |                        |        |                    |     |                |          |   |
|  | •                                                                                                                                                                        | SHA2_BLAKE2_IVs |             | relatedCryptoMaterial |   | na          |   |                        | ÷.     |                    | ÷   |                |          |   |



