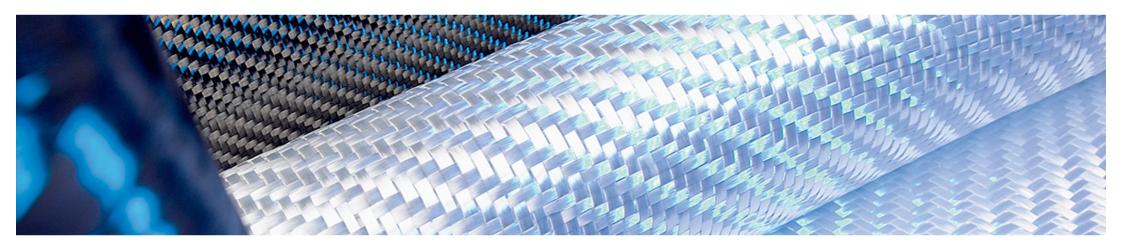


making GFRP recycling a reality


A sustainable future for the composites industry

OST Coffee Lectures 18 June 2024

Composites are extraordinary materials

Outstanding material properties

- Specific strength 10x higher than metals
- Corrosion resistant
- Lower thermal conductivity
- Better fatigue resistance

Composites are extraordinary materials


Applications of composites reducing CO₂ emissions

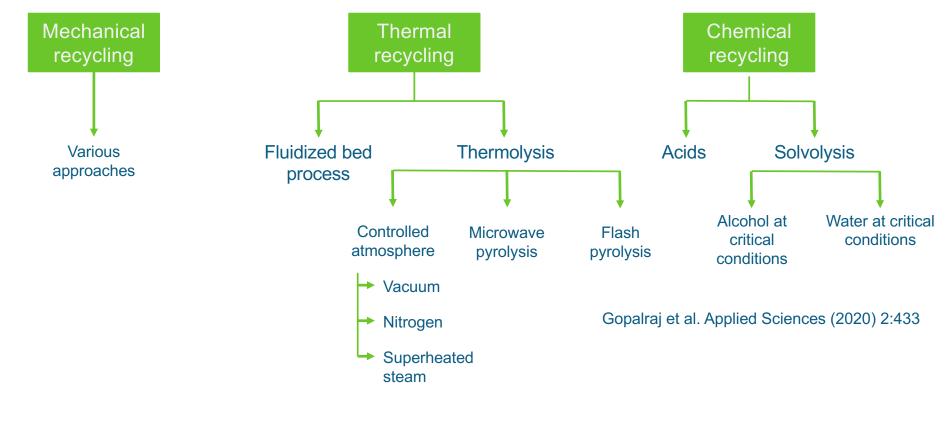
700 bar hydrogen tanks

130m wind turbine blades

Jet engine blades

Composites are durable...but not recyclable

Treating end-of-life and production wastes poses a major challenge


- More than 500'000 tonnes of composite wastes were produced in 2023 in Europe
- 840'000 tonnes produced by the aircraft and wind turbines industries worldwide by 2030
- Landfilling is **banned in Austria**, soon this ban will be extended to the rest of Europe

Wind blade deposit in the Permian basin, Texas, USA

Recycling technologies exist

Recycling technologies : Solvolysis

Advantages

- effective resin/fibre separation
- recovery of high-quality fibres
- low energy consumption

Challenges

- high operating cost
- solvent management
- incomplete depolymerization, residues on the fibres

Recycling technologies : Thermolysis

Advantages

- scalable units
- recovery of high-quality fibres
- versatility of polymers and fibres treatable

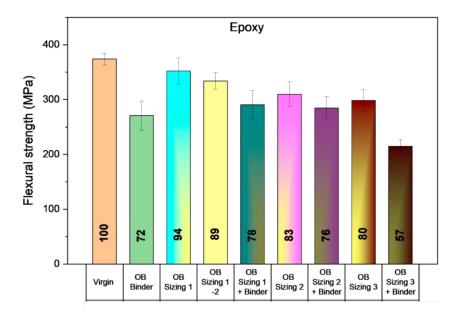
Challenges


- high initial investment
- energy intensive
- treatment of output gases

Our thermolysis approach

Developed from the start in partnership with industry players and academia

Proprietary Thermolysis Process


Proprietary Post-treatment Process

- No fine shredding, process optimized for single waste type (GFRP and CFRP)
- Process parameters and output specs are adapted to each composite matrix
- Cleaning of fibres is performed during a second calcination step
- Process temperature is kept below 500°C to retain mechanical properties of the glass fibres

Laboratory for Processing of Advanced Composites

Glass fibre recovery

Keeping the quality of the fibres as high as possible

Innosuisse Project on Fibre treatment

• Two approaches to make new composites with recovered fibres : mixing with virgin fibres and re-sizing

- Mixing leads to 75% recovery of flexural strength mixing 33% of recovered fibres with virgin fibres
- Re-sizing allows for up to 94% recovery of flexural strength Innosuisse project just started

Laboratory for Processing of Advanced Composites

OST Coffee Lectures

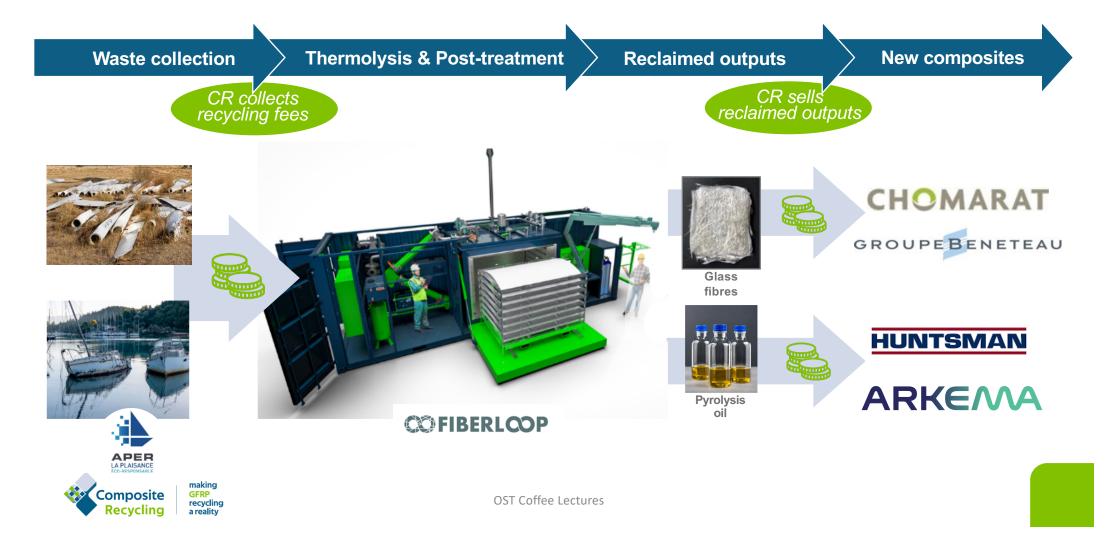
CHOMARAT

Thermolysis oil recovery

Thermolysis oil has a high recovery potential

Innosuisse Project FullRecycling

Identification	Chemical Formula	Retention time (mn)	Relative area (%)
Toluene	C ₇ H ₈	3.52	16.7
Ethylbenzene	C_8H_{10}	6.19	12.9
Styrene	C ₈ H ₈	6.86	41.7
Cumene	C_9H_{12}	7.35	1.1
A-Methylstyrene	C_9H_{10}	8.2	7.1
Dimethyl terephtalate	$C_{10}H_{10}O_4$	12.51	5.2
Diphenylpropane	$C_{15}H_{16}$	0.5	0.35


- Thermolysis oil contains molecules that can be used in the petrochemical industry to form new plastics
- Mostly benzene, toluene, styrene, xylene and phenols
- Strategy is to explore distillation, and steam cracking of the heavier compounds

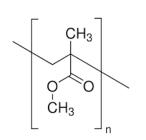
HUNTSMAN

A proven and circular business model

Mobile capability

Our mobile recycling units go to the waste

- Optimizes client service reduced shipping of bulky waste material
- Can be deployed rapidly and easily (ex: hurricane strike zone)
- Much faster operational scale-up than single central facility
- Enables study and mapping of waste streams prior to building of fixed regional facilities



Focus on Elium[™] Resin from Arkema

An innovative matrix system

- Thermoplastic resin
- Excellent mechanical properties
- Easy processing
- Lightweight
- Cost effective

Focus on Elium[™] Resin from Arkema

A game-changer in the production of wind blade turbines

Mechanical data	Units	ELIUM	EPOXY
Density	g/cm3	1.178	1.15
Glass transition temp	°C	97.9	90
Flexural strengh	MPa	84	90
Tensile strengh	MPa	54	70
Elongation break	%	2.5	8
Tensile Modulus	GPa	3	2.9
Water absoption	7d[%]	0.5	0.35

Thermolysis of Elium-based composites

Elium-based composites particularly well-suited for thermolysis recovery

Identification	Area (%)
Methylmetacrylate	77.2
Light compounds	9
Additives	2
Heavy compounds	9

GC-MS of pyrolysis oil from Elium-based composite

- PMMA (Polymethylmetacrylate) based, thermolysis can be performed at lower temperature
- Fibres are better preserved during the pyrolysis process, and less energy is used
- Pyrolysis oil recovered by CR contains up to 70% MMA (methylmetacrylate)

Case study: ZEBRA project

A 62-meter blade was made using Arkema's Elium® resin AND glass Fabrics from Owens Corning

European Wind Blade Recycling Summit 2024

Challenges and possible solutions

Treating composites with problematic composition : halogens

- Many former generation composites contain halogens
 - Chlorine : Polyvinyl chloride (PVC), chloroprene used as filler
 - Fluor : Polytetrafluoroethylene (PTFE) used to improve chemical resistance
 - Bromine : Polyvinyl bromide (PVB) used as flame retardant

OST Coffee Lectures

Challenges and possible solutions

Treating composites with problematic composition : halogens

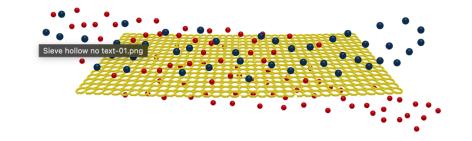
- Produce acids through pyrolysis
- Get into the thermolysis oil, hindering use in refineries
- Concerns for atmospheric emissions

OST Coffee Lectures

Challenges and possible solutions

Solution to treat halogen-containing composites

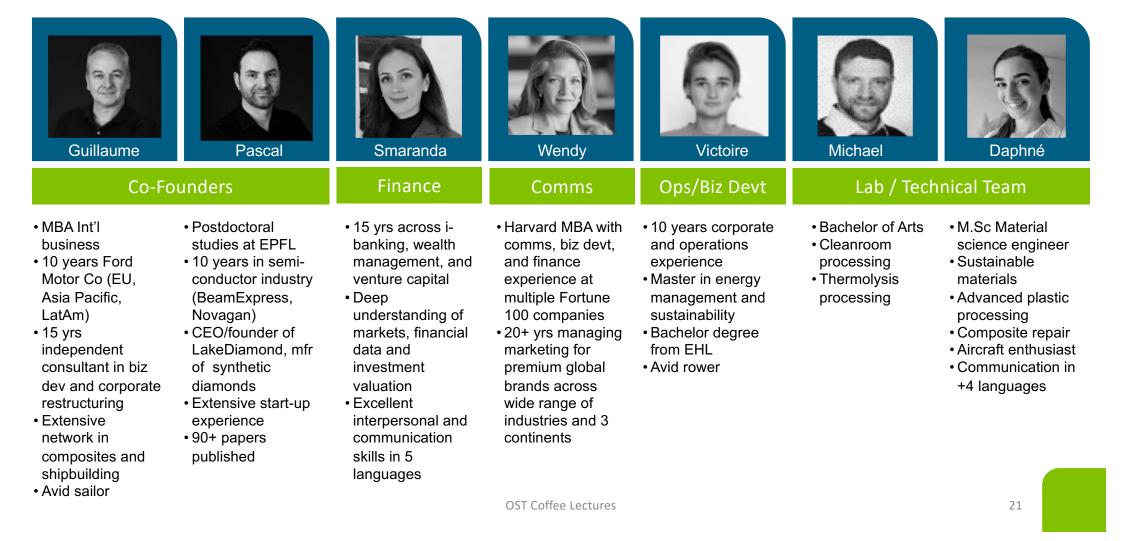
- Sorting waste
 - Shredding and separating problematic parts
- Thermolysis process
 - Insert an intermediate step to remove the elements before extracting the oil
- Chemical or physical treatment of the oil to remove halogens and heavy metals



OST Coffee Lectures

Challenges and possible solutions

Thermolysis CO₂ emissions


- Run thermolysis reactor on electricity from renewables
 - Our heaters are exchangeable with electric ones
- Implement a carbon capture solution
 - CO₂ concentration is high at the exhaust
 - Possible recovery with molecular sieving and closed loop adsorption/desorption

Our dynamic & talented team

Technology traction

- First mobile containerized unit (2 tonnes/day capacity) to be delivered by Swedish supplier FiberLoop in July 2024
- Three larger reactors (4-tonne daily capacity) to follow in 2025
- Glass fibre output quality validated for industrialization and LOIs signed by industrial partners Chomarat & Bénéteau
- Patent filed on the principle of static thermolysis treatment and on-site processing via mobile container

