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MARKET AND MANAGEMENT Digitalization

There are two main challenges in im-
plementing Industry 4.0 today [1]. 
On the one hand, there is often a lack 

of awareness in practice, both for poss-
ible applications and for the necessity of a 
concrete step-by-step implementation. 
We are talking about the actual target 
orientation or also use case definition for 
the smart factory. This concretization 
must be oriented to the following ques-
tions:

W  How can I increase my value creation 
by using data?

W How can I use my data? What is the 
goal?

W What data do I need to implement a 
specific use case?

The awareness for possible applications 
can be created by the use case frame-
work presented in the last article of this 
series (Kunststoffe international 7/21). This 
framework was systematized and devel-

oped on the basis of realized use cases in 
practice [2].

On the other hand, learning from data 
requires a complete database. Some 
questions arise here as well:
W Which signals do I need? Which signals 

are available at all?
W What quality of data do I need? Is the 

data available in this required quality?
W How do I get the data out of my ma-

chine?
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Part 2 of the Series: Integrated Data Acquisition for the Injection Molding Production

Everyone is talking about digitalization and Industry 4.0. In practice, however, implementation is often difficult. 

The data-driven operation of an injection molding production is often still a dream. Only if the exact actual con-

dition of the machines and peripheral equipment is known, work on optimizing the processes can be done. The 

Eastern Switzerland University of Applied Sciences describes the challenges that have to be overcome and 

shows possible solutions based on a self-operated manufacturing cell.
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and various peripheral devices have now 
been integrated. The recorded data can 
be visualized and evaluated directly.

A number of challenges had to be 
overcome in order to set up this type of 
data acquisition for machine learning. It 
became clear that device-specific sol-
utions often had to be implemented so 
that the data could be exported and rec-
orded in the desired quality. This is a 
hurdle for smaller manufacturing com-
panies in particular, as such interdisciplin-
ary know-how is often not available. 

Another difficulty is the synchroniz-
ation of data from different machines and 
devices (e. g. injection molding machine, 
temperature control units, ambient con-
ditions). Each device usually works with 
its own time stamp. This is a common 
problem, especially when working with 
time series of different devices. This can 
be avoided by setting up a live system in 
which all data is recorded synchronously. 
The time stamp is assigned by the data 
acquisition system. However, this requires 
that all machines and devices provide the 
data live. This means that curve data, 
which for example is made available via 
the OPC UA interface at the end of the 
cycle as time series histories, is not suit-
able for this purpose. A direct query of 
strongly time dependent signals (e. g. in-
jection pressure or screw position) via 
OPC UA in high frequency is not suitable 
due to the limited publishing interval of 
the interface (usually max. 200 to 

W How do I synchronize data from differ-
ent machines and devices?

The database is often a major hurdle, as 
the data is simply not available or not in 
sufficient quality. In the field of plastics 
processing, for example, there are no 
suitable, industry-wide standardized 
specifications and protocols that can be 
integrated with a variety of different 
data sources and database systems 
without any problems. This lack of stan-
dardization has resulted in each ma-
chine providing data differently today. 
Fortunately, many standards and specifi-
cations are currently in development 
(e. g. OPC UA), so interoperability will im-
prove in the future.

Data Acquisition

Investigations showed that a step-by-
step approach to implementing Indus-
try 4.0 in plastics processing is target-
oriented. We start with the definition of 
the use case. Based on this, an initial 
model for prediction can be developed 
with a focus on this use case. The vali-
dated model can then be integrated into 
the IT landscape, which is then rolled out 
in the factory or the entire production 
network. This is also reflected in the de-
veloped model for the implementation of 
Industry 4.0 in the factory (Fig. 1).

Many expert organizations are cur-
rently also dealing with this topic and 
specifically with the standardization of 
data. For example, there are also recom-
mendations from the VDI group on which 
signals should be recorded in the field of 
injection molding [3]. 

Newer machines offer increasingly 
better data availability, i. e. they also en-
able more and more high-frequency re-
cording of the individual signals and their 
storage as time series curves. This en-
ables in-depth process analyses, which 
are essential depending on the use case. 
For the cyclic export of process par-
ameters, the Euromap 63 and Euro-
map 77 (OPC UA) interfaces also play an 
important role here.

Implementation of the Smart Factory

At the Institute of Materials Technology 
and Plastics Processing (IWK), it was poss-
ible to set up a data acquisition system to 
which five different injection molding 
machines from various manufacturers 
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Fig. 1. Model for the implementation of machine learning in the factory Source: © OST – Eastern Switzerland 

University of Applied Sciences; graphic: © Hanser
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500 ms). However, it is possible to query 
pre-calculated parameters (such as maxi-
mum or average values) at the end of 
each cycle, and these data can also be 
combined with curve data. Nevertheless, 
aggregation already results in a loss of in-
formation. Depending on what is to be 
learned from the data, this can of course 
be critical. Older machines, which do not 
support such interfaces and do not store 
raw data at all due to limited storage ca-
pacities, present an additional difficulty. 

In addition to synchronization, the al-
location of data from different pre or post-
processes is also an issue. On the one 
hand, data acquisition differs between 
continuous processes, e. g. material drying, 
in which continuous time series are rec-
orded, and discontinuous processes such 
as injection molding and, for example, 
welding as a follow-up process, in which 
the data are recorded for each cycle and at 
a defined sampling rate. On the other 
hand, the data from the pre-process steps 
must then also be able to be clearly as-
signed to the later data of the part. For in-
jection molding, this means which materi-
al batch was processed and how long was 
the material used, to manufacture the 
molded part, pre-dried? This is not a 
simple question, which is why it is cur-
rently still being worked on. For follow-up 

processes, this is much easier, since the 
part and the associated data already exist 
and only need to be expanded.

Fully Automated and Self-Learning 
Manufacturing Cell

One implementation of this connected 
factory is a manufacturing cell for the pro-
duction of a floorball (Title figure and Fig. 2). 
The ball halves are manufactured on an in-
jection molding machine, laser marked, 
completely measured in three dimensions 
and then stored in an interim storage sys-
tem sorted by color. A collaborative robot 
is used for automated handling.

For customer orders, this robot takes 
the ball halves in the desired color from the 
storage system and transfers them to the 
welding machine, where the halves are 
welded into a ball fully automatically. This is 
a fully connected and automated produc-
tion cell, the process data of all production 
steps as well as the quality characteristics 
are stored in the cloud and can be clearly 
assigned to each ball. On the one hand, 
this ensures complete traceability and, on 
the other, the entire production process 
can be optimized by using artificial intelli-
gence and advancing towards zero-defect 
production. This manufacturing cell serves 
as a training object for students of the OST 

Fig. 2. Production flow of fully automated manufacturing cell Source: © OST – Eastern Switzerland University of Applied Sciences; graphic: © Hanser
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The Series Continues
The last article in this series takes a look at 

the challenges involved in implementing 

specific use cases and learning from data 

with the help of artificial intelligence in 

the field of compounding production 

technology.
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–Eastern Switzerland University of Applied 
Sciences and shows companies the possi-
bilities of digitalization.

Use of Data Acquisition for  
Research Projects

The data acquisition system also serves as 
the basis for the use of artificial intelli-
gence in a wide range of projects in the 
field of injection molding. A central topic 
is the early detection of process 
anomalies on the basis of process data. 
When an anomaly occurs, the machine 
operator should also be given a recom-
mendation for a suitable counter-
measure. This topic is being investigated 
in a three-year publicly funded research 
project with five industrial partners.

The process anomalies can be reliably 
detected and first appropriate counter-
measures can be suggested. With the use 
of a support vector machine and an auto-
encoder an anomaly score (Fig. 3, top left) can 
be calculated based on various features. 
This indicates how stable the current pro-
cess is running. When this score increases, a 
recommendation for action is suggested to 

the operator (Fig. 3, bottom right), which can 
be used to correct the process. 

Other use cases include the predic-
tion of the quality characteristics of the 

manufactured parts on the basis of pro-
cess data and predictive maintenance or 
detection of wear on tool or machine 
components. W

Fig. 3. GUI (Graphical User Interface) for anomaly detection and countermeasure proposal 
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