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Abstract We consider a production/inventory system consisting of one production
line and multiple products. Finished goods are kept in stock to serve stochastic demand.
Demand is fulfilled immediately if there is an item of the requested product in stock
and otherwise it is backordered and fulfilled later. The production line is modeled as a
non-preemptive single server and the objective is to minimize the sum of the average
inventory holding costs and backordering costs. We investigate the structure of the
optimal production policy, propose a new scheduling policy, and develop a method
for calculating base stock levels under an arbitrary but given scheduling policy. The
performance of the various production policies is evaluated in extensive numerical
experiments.
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1 Introduction

A common trend in industries where capacity investments are capital-intensive is to
invest in flexible manufacturing systems. A flexible manufacturing system is capable
of producing a wide range of products and rapidly changing production according
to realized demand or forecast changes. Examples include auto-manufacturing, semi-
conductors and pharmaceuticals. An important reason for this trend is the growing
product variety, which causes lower average demand volumes and greater variability
in demand for the individual products. As a result, investments in dedicated capac-
ity have become less economical. In these industries, a firm’s ability to carefully
manage flexible capacity is often a significant factor for its success (cf. Linebaugh
2008).

In this paper, we consider a well-known production control problem, posed in Pefia
Perez and Zipkin (1997). Although it is an abstract problem, it captures the two key
features of any real flexible manufacturing system: (i) several products compete for
limited production capacity, and (ii) production can be changed from one product to
another rapidly and at no cost. The problem is to operate a single production line
that produces multiple products in a make-to-stock mode to manage finished goods
inventory with the objective of minimizing average inventory holding and backorder-
ing costs. The production line is controlled by a production policy. Each production
policy answers two questions: (i) when to produce, and (ii) what to produce. Some
production policies answer both questions simultaneously, but often production poli-
cies are made up of two separate control policies: an idleness policy that dictates when
the production line is idle or busy and a scheduling policy that selects the good to
produce in the latter case.

The goal of this study is to develop new production policies and compare their
performance against existing policies. In these comparisons, we restrict ourselves to
dynamic production policies as they usually perform considerably better than static
control policies (see e.g., Veatch and Wein 1996).

Our main contribution consists of five parts:

e We propose a new dynamic production policy that is applicable for small and
large problem instances. It consists of a rolling horizon scheduling policy and
a simulation optimization method for calculating base stock levels. These base
stock levels dictate when production is turned on and off. In extensive numerical
experiments with two products, we show that the optimality gap of this production
policy is usually small.

e We compare various heuristic production policies on a wide range of large problem
instances. Such a comparison is lacking in the literature. In extensive numerical
experiments, we show that our proposed production policy outperforms the other
production policies. In particular, it is better capable of handling situations with
non-identical production rates.

e We show that our simulation optimization method for calculating base stock levels
is effective and efficient. If applied in combination with the proposed scheduling
policy, it calculates base stock levels that are close to optimal. We also show that
the method performs well in combination with other scheduling policies.
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o We show that the optimal production policy is not necessarily of the base stock
type. This is illustrated by an example with two products where the optimal base
stock production policy performs more than 10 % worse than the overall optimal
production policy.

e We show that the optimality gap of the myopic allocation policy proposed in
Pefia Perez and Zipkin (1997) can grow beyond 40 % in the case of non-identical
production rates. This is an important insight and contradicts what people generally
believe.

Although our work is mainly motivated by the production/inventory control prob-
lem for flexible manufacturing systems, it is also relevant for additive manufacturing
(often called 3D Printing), remanufacturing systems, and repairable inventory sys-
tems. General purpose 3D printers can build a wide variety of complex products with
no change-over times. This perfectly aligns with the assumptions made in this paper.
A nice introduction to 3D printing and a discussion of its impact on the supply chain
can be found in Janssen et al. (2014). Liu et al. (2014) and Khajavi et al. (2014) more
specifically study the impact of 3D printing on spare parts management. An interesting
contribution in the field of remanufacturing systems is Lieckens et al. (2013), where
the authors develop a decision support tool to optimize the global network design
and the demand fulfillment strategy for a manufacturer of compressed air equipment.
In their model, operational decisions such as work scheduling at the refurbishment
centers are not considered since they assume infinite capacities. In the (realistic) case
of capacity constraints, dynamic scheduling policies could be very useful. In Sect. 8,
we discuss an interesting future research direction in the field of repairable inventory
systems.

The paper is structured as follows. We start with a literature review and position
our research in Sect. 2. In Sect. 3, we formulate our model and discuss important
assumptions. In Sect. 4, we describe the simulation optimization method for calculating
base stock levels. In Sect. 5, we describe four production policies (three new ones
and one existing one). In Sect. 6, we carry out extensive numerical experiments to
evaluate the performance of the four production policies. In Sect. 7, we investigate the
performance of the simulation optimization method. Finally, we give our conclusions
and suggestions for future research in Sect. 8.

2 Literature review

The single product version of our problem has been extensively studied in the literature;
see Gavish and Graves (1980), Sobel (1982), and Li (1992). In this case, the only
decision is when to produce, and under standard cost assumptions a base stock policy
is optimal. This means that there is a fixed inventory target (the base stock level), and
the production line is busy if inventory is below that target and idle otherwise.

The literature stream on multi-item make-to-stock queues is most relevant to our
work. One of the first contributions in this stream is due to Zheng and Zipkin (1990)
who consider a system consisting of two symmetric products under base stock control.
They study the Longest Queue (LQ) policy and compare its performance against FCFES.
Zipkin (1995) examines the performance of LQ on systems with more than two prod-
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ucts. Van Houtum et al. (1997) derive lower and upper bounds for the mean waiting
time for the symmetric longest queue system in order to minimize the base stock levels
required to achieve a target fill rate. Wein (1992) allows for asymmetric products and
derives an approximating Brownian control problem for the multi-item make-to-stock
queuing problem. He uses the solution of this stochastic control problem to propose a
production policy consisting of an aggregate base stock policy and a static scheduling
policy. Veatch and Wein (1996) investigate several combinations of idleness policies
and scheduling policies and show that the combination of the aggregate base stock
policy presented in Wein (1992) and a dynamic scheduling policy performs surpris-
ingly well. Pefia Perez and Zipkin (1997) propose the myopic(T) scheduling policy. It
selects the product that achieves the highest ratio of the expected cost rate reduction
at a carefully chosen future time point and its average production time. They combine
their scheduling policy with an idleness policy obtained from the optimal aggregate
base stock level. They assume non-preemptive processing and show that the resulting
production policy has a small optimality gap and outperforms the static production
policies. Sanajian et al. (2010) consider a repair shop problem and show in numerical
experiments that the optimality gap of the myopic(T) policy usually gets smaller if
preemption is allowed. In Liang et al. (2013), the authors develop a myopic scheduling
policy for repair shops with preemption and state-dependent arrival rates. Ha (1997)
provides the theoretical justification of some of the ideas suggested by the approxima-
tion model in Wein (1992) and proposes a new dynamic rule for prioritizing products,
the switching rule. Reported numerical tests with optimized base stock levels suggest
that the switching rule has a small optimality gap and outperforms two other schedul-
ing heuristics. Although Ha (1997) recognizes that it would be interesting to compare
the switching rule with the myopic(T) scheduling policy, such a comparison has never
been carried out. Kat and Avsar (2011) study a problem where fixed backordering
costs are incurred regardless of the time needed to satisfy the backordered demand.
They carried out numerical experiments that suggest that the optimal policy is a base
stock policy with switching curves and fixed (not state-dependent) base stock levels.
For asymmetric systems, base stock levels must be obtained via an extensive (enu-
meration type of) search. In a recent contribution, Arreola-Risa et al. (2011) consider
a system with symmetric products and propose a heuristic that is based on simulation
and regression analysis to optimize the base stock levels.

Two other relevant contributions come from the field of probability theory. Building
upon the seminal work of Whittle (1988), Dusonchet (2003) and Nifio-Mora (2007)
formulate the multi-item make-to-stock queue with average cost criterion as a Rest-
less Bandit Problem. Nifio-Mora (2007) shows that the marginal productivity index
obtained from the restless bandit formulation coincides with the myopic(T) schedul-
ing policy in the case of linear holding and backordering costs, and further extends it
to models with convex nonlinear cost rates and/or discounted costs.

We conclude this literature review with a short discussion of periodically reviewed
systems. DeCroix and Arreola-Risa (1998) propose a balancing rule that uses a target
inventory level for each product to divide the available production time in a period
across all products. Base stock levels are obtained from a one-dimensional search
along the line spanned by the vector of single period news vendor levels. The search is
carried out using simulation. Janakiraman et al. (2009) extend this work and propose a
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weighted balancing rule. They show that this rule is optimal in two asymptotic regimes
represented by high service levels and heavy traffic.

3 Problem description and model formulation

In this section, we define the problem, introduce our notation, discuss assumptions, for-
mulate our model, and empirically investigate the structure of the optimal production
policy.

3.1 System description and main assumptions

We consider a single location consisting of one production line and one stockpoint,
where multiple products are kept in stock to serve stochastic demand. When demand
arrives and the requested product is in stock it is immediately fulfilled. Otherwise,
it is backordered and fulfilled as soon as an item of the requested product becomes
available from the production line. For each product, there is an inventory holding cost
and a backordering cost per item per time unit. Our objective is to develop a policy for
operating the production line that minimizes the average total cost. This is exactly the
setting studied in Pefia Perez and Zipkin (1997). The notation of our model is given
in Table 1.
Next, we formulate our main assumptions:

(1) Requests for each product follow independent Poisson processes with constant
means.

(i1) There are ample raw materials; the only limiting resource is the production
capacity.

(iii) Production times for each product are mutually independent. We do not make
assumptions regarding the type of distributions. To obtain a stable system, we
assume that the system utilization rate is strictly smaller than 1.

(iv) The production facility is modeled as a single server. This assumption is made
to facilitate an exact analysis. In reality, production facilities can often produce

Table 1 Notation

Parameters
1 Number of products (products are numbered
..., D)
A Demand rate of product i
/i Average production time of product i
hj Inventory holding cost per time unit per item of
product i
b; Backordering cost per time unit per item of product i
Variables
zZ Vector of net inventory levels
Si Base stock level for product i
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multiple products in parallel, thereby violating the single server assumption.
Still, the assumption captures the key feature that several products compete for
the same limited production capacity.

(v) Setup costs and change-over times are negligible when switching products.

(vi) Production of an item can not be interrupted (non-preemption).

Assumptions (i)—(iv) are common in the make-to-stock literature and are made to
facilitate the analysis. Assumption (v) is also common and is justified for flexible
manufacturing systems. Assumption (vi) is primarily made to allow a fair compari-
son of new production policies against the myopic allocation policy, but also makes
sense from a practical point of view. First, it can be cumbersome to remove partially
manufactured items and the unused input materials from the production line. Second,
resuming the manufacturing of an interrupted product at a later time point may be very
inefficient. Finally, non-preemption leads to more predictable completion times. This
is in particular true in the case of deterministic production times and offers opportu-
nities for offline preparation of the next production run.

3.2 MDP formulation

In this section, we formulate the production control problem with exponentially dis-
tributed production times as a continuous-time average cost MDP with finite state and
control spaces (see e.g., Bertsekas 2007, pp. 310-316). State transitions and action
selections take place at time instances when one of the following two event types
occurs: (i) the production of an item has just been completed, or (ii) a new prod-
uct demand has just arrived at the stockpoint. Note that we do not require that the
calculated production policy belongs to the class of base stock policies.

We describe the states of the system at the moments that events occur by states
X = (z, j), withz = (z1, ..., z7) the I-dimensional vector of net inventory levels,
and j € {0, 1,..., I} areference to the product that is currently being produced. If
the production line was idle or if the production of an item was just completed, we set
J equal to 0. We define the state space . as . = {((z1,.--,21), j)|zi € Z, i =
1,...,1, j=0,...,I}. Theaction space for our modelis .o/ = {0, 1, ..., I}. Here,
action j > 1 stands for the decision to produce an item of product j, and action 0 stands
for the decision to produce nothing. Because of non-preemption, the following holds
for the set of admissible actions <7 (z, j) for each state (z, j) € .: &/ (z, j) = {j} if
j>1land &/(z,0) ={0,1,...,1}.

Next, we describe the transitions for our MDP formulation. We assume that if the
system is in state X and action a is applied, the next state will be y with probability
Dx,y(a). Furthermore, we define e; for i > 0 as the /-dimensional unit vector with a
1 at position i.

Transition type I initial state: x = (z, j) with j € {1, ..., I}, action: j, next event:
arrival of a new demand for product i, next state: y = (z — e;, j). The transition rate
is A; and the transition probability px y(j) is equal to )Li/[z,[l:l An + gl
Transition type 2 initial state: x = (z, j) with j € {1, ..., I}, action: j, next event:
production order completed, next state: y = (z + €;, 0). The transition rate is u; and
the transition probability px y(j) is equal to /Lj/[zlﬁzl A+ gl
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Transition type 3 initial state: X = (z, 0), action: j € {1, ..., I'}, next event: arrival of
a new demand for product i, next state: y = (z — e;, j). The transition rate is A; and
the transition probability py y(j) is equal to )‘i/[Zi:I An + gl

Transition type 4 initial state: x = (z, 0), action: j € {1, ..., I}, nextevent: production
order completed, next state: y = (z+e;, 0). The transition rate is 1 ; and the transition
probability py y(j) is equal to Mj/[z,izl An + @il

Transition type 5 initial state: X = (z, 0), action: 0, next event: arrival of a new demand
for product i, next state: y = (z — e;, 0). The transition rate is A; and the transition
probability pyx y(0) is equal to )»,»/[Z,Ilzl Al

The mean transition period lengths 7 (X, a) for all state/action pairs directly follow
from the transition rates. We conclude our MDP formulation with the specifica-
tion of the expected single stage cost K((z, j), a) when choosing action a in state
(z, j). Since there is no cost associated with the action, it holds that K ((z, j), a) =
t(x,a) L [hy max(z,, 0) + b, max(—z,,0) 1.

Before we can calculate the optimal production policy from the MDP, we must
truncate the state space. For this purpose we introduce for each product i a minimum
and a maximum net inventory level (denoted as Lf.“i“ and L, respectively). This
requires two small modifications in the transition probabilities and the admissible
actions at the borders of the truncated state space. First, for states (z, j) withz; = L;ni“
for some i = 1,..., 1, we replace the transition from (z, j) to (z — e;, j) with a
transition from (z, j) to itself. Second, for states (z, 0) with z; = L™, we remove
action i from the set of admissible actions. The state space for our model now reads
as: = {((z1,....z), HDILMD < z; < LMz, € Z, i = 1,...,1, j =
0,...,1}. We choose L}“i“ and L™ such that an increase of the state space has no
significant impact on the average cost obtained from the MDP with the truncated state
space.

To obtain the optimal production policy we transform the continuous-time MDP
into a discrete-time MDP by applying a technique called uniformization (see e.g.,
Bertsekas 2007, pp. 288-295). The uniformization procedure consists of three steps:
in the first step, we determine a new transition period length 7 such that T < 7(x, a)
forallx € % and a € &7. It is easy to see that T = 1/[max(u;) + Zflzl Al is an
appropriate choice. In the second step, for each state x and action a € .27 (x), we add
an extra outgoing transition to state X itself and the corresponding rate is set equal to
(1/t) — (1/t(x, a)). By adding these “fictitious” transitions the total outgoing rate
becomes equal to 1/t in each state, while they have no effect on the average costs
under any given policy. In the third step, we recalculate the transition probabilities
and the expected single stage cost taking into account the fictitious transitions added
in the previous step. They are denoted as pyx y(a) and K(x, a), respectively.

We now obtain the desired discrete-time MDP by replacing the exponentially dis-
tributed transition period lengths by constant transition period lengths with the same
mean. The optimal average cost rate £ * follows from the Bellman optimality equations
for the (discrete-time) average cost MDP:

w*(x) = aé?}?x)[mx’ a)— ¢t + y%‘; ﬁx,y(a)w*(y)} Vx € . (1)
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The optimal action a*(x) is the action that attains the minimum in (1). To solve (1),
we use relative value iteration (see e.g., Bertsekas 2007, pp. 204-229). Note that the
number of optimality equations grows linearly with the number of states and thus
exponentially in the number of products. Consequently, the optimality equations in
(1) can only be solved for small problem instances (typically 2—-3 products).

3.3 Optimal policy structure

In this section, we empirically investigate the structure of the optimal production
policy. To the best of our knowledge, there are no results on the structure of the
optimal policy for systems with non-preemptive processing. This means that we may
not a priori assume that the optimal production policy belongs to the class of base
stock policies. In Example 1, we actually show that the optimal production policy
sometimes has a different structure and that limiting the search for good production
policies to base stock policies may have a significant negative impact on the achieved
average total cost.

Example 1 Consider the multi-item make-to-stock problem defined by the vectors
A = (A1, 22) = (1.40,0.35), 0 = (u1, n2) = 4, 1), h = (hy, hy) = (1.0, 0.5), and
b = (b1, b2) = (80, 40). Figure 1a shows the optimal production policy and Fig. 1b
shows the optimal base stock production policy The optimal production policy has an
average total cost of 10.49, whereas the optimal base stock policy (with S = (8, 7))
has an average total cost of 11.68. This is a cost increase of more than 10 % and shows
that restricting the search for good production policies to base stock policies can have
a significant negative impact on the achieved average total cost.

Figure 1 points out some remarkable properties of the optimal production policy.
For net inventory vectors (7,7), (8, 8), (8,9), and (9, 10), we see that production
is switched off when the on-hand stock of product 1 decreases. At first sight, this
seems counterintuitive as for each product the stockout risk increases if on-hand stock
decreases. However, the assumption of non-preemptive processing makes things dif-

1 T 1 11
T Produce T Produce
0 nothing 0 nothing
9 .. | 9 . T
[N O
~ - ~ E
g 7. g 7.
B °. B °.
s 5 s 5
i 4. i L.
X% 3. Produce 1 x 3. Produce 1
S 2 S 2
7 . 7 .
@ 1 v 1
zZ o Produce 2 7 zZ o Produce 2
1" El
> = > ]
S A S S A A A A ‘ O A R A A A o
3 -2 1 0 1 2 3 4 5 6 7 8 9 3 -2 -1 0 1 2 3 4 5 6 7 8 9
Net stock level product 1 > Net stock level product 1 >
(a) (b)

Fig. 1 Optimal production policies for Example 1
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ferent. Due to this assumption, there is an option value associated with the decision
to leave the production line idle because it keeps the option open to immediately start
the production of either of the two products whenever necessary. Naturally, this option
value increases as the on-hand stock decreases. Using this option value concept, we are
now able to give an intuitive explanation of the optimal policy structure in the upper
right part of Fig. 1b. If on-hand stock of product 1 is low, the optimal policy tells to
produce product 1 (in an attempt to avoid future backorders of product 1). If on-hand
stock of product 1 is medium, the optimal policy tells to switch off the production line
(thereby keeping the option open to start producing product 1 immediately). Only if
on-hand stock for product 1 increases further, it is worth to give up this option and
start producing product 2. Note that by = 80 > by =40 and u =4 > upy = 1,
i.e., for product 2 backorder costs are low and average production time is long. This
may explain why the effect occurs as a function of the inventory level of product 1.
Example 1 also raises the question if the optimal production policy belongs to the
class of base stock policies if we allow preemptive production scheduling. Numeri-
cal investigations suggest that this is indeed the case. However, we cannot generalize
this to general preemptive production systems. For such systems, we know that base
stock policies are optimal for two products, discounted cost, and identical production
rates (cf. Ha 1997). De Vericourt et al. (2000) extend Ha (1997) and show that the
myopic(T) scheduling policy is optimal in states where the product with the lower
b; 11; value has negative stock. We are not aware of further results on the structure of
optimal production policies.

Note that both production policies shown in Fig. 1 have been evaluated using MDP
analysis. We have validated the MDP outcomes via discrete event simulation and
observed that the simulated costs (based on 40,000,000 simulated demands) differed
less than 0.3 % from the calculated costs. This is a strong indication that the results
are correct.

4 Simulation optimization method for calculating base stock levels

As mentioned earlier, heuristic production policies usually consist of an idleness policy
and a scheduling policy. All heuristic production policies studied in this study use
idleness policies that are defined via a base stock level for each product. Production is
switched on when the on-hand stock of at least one product is below its base stock level
and switched off otherwise. At the same time, the scheduling policy may only select
products whose on-hand stock is lower than their base stock level. An important task
when developing production policies is thus to find methods to calculate appropriate
base stock levels.

In this section, we propose an iterative method for calculating a base stock level
vector S for arbitrary problem instances and an arbitrary but given scheduling policy
. It is a new method that serves as a building block for three of the four evaluated
production policies. It uses discrete event simulation to examine the performance of
candidate base stock level vectors and consists of three phases: initialization, greedy
improvement, and local search. All simulation runs use the same random seed g —opt »
and thus the same stream of random inter-arrival times and random production times.
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The length of each simulation run depends on the problem instance and is chosen
such that the probability that the simulated average cost differs more than 1 % from its
expected value is less than approximately 5 %. To achieve this, we adopt the method
of non-overlapping batch means (see e.g., Steiger and Wilson 2001). We execute this
method with a warming-up period of 500,000 demands and 20 batches, each of initial
size 500,000 demands. As long as the desired 99 % accuracy is not reached, the batch
size is doubled and the existing batches are reorganized. To avoid the risk of excessive
run-times, we stop the procedure after the batch size has reached 2,000,000 (also in
the case that the desired 99 % accuracy has not been reached). Only in very few base
stock level calculations, this additional stopping criterion was triggered.

Phase 1: Initialization

In this phase, we create an initial base stock level vector S° from the Brownian motion
idleness policy proposed in Wein (1992) and the myopic(T) scheduling policy pro-
posed in Pefia Perez and Zipkin (1997). This production policy can be calculated very
easily and performs surprisingly well (cf. Veatch and Wein 1996). The obtained base
stock level is thus a reasonable start solution for our iterative procedure. We now
shortly summarize how to obtain the base stock levels. For details we refer to Veatch
and Wein (1996). The Brownian motion idleness policy decides to leave the production
line idle when the aggregated production time represented by the stock in the system,
ie., zil=1 (zi/ i), exceeds the following threshold:

1
__le,-tz(v}d +v7) )
c=2= T ln(l—i-z), 2)

where p = > (i/wi), b = minj<<q {b; i}, h = minj<;<s {h; i}, via is the
coefficient of variation of the inter-arrival times of product i, and v;), is the coefficient
of variation of the production times of product i . To obtain S° we must do the following.
First, we set S = 0. Then, we call the myopic(T) scheduling policy with argument
SY to obtain the product # that is most attractive for being entered into production and
update S° according to S° = 8% + e,,. We repeat this procedure until the aggregated
production time Z{: 1 (SZQ /i) exceeds the threshold ¢ in (2).

Phase 2: Simultaneous base stock level updates

This phase consists of an iterative procedure where multiple base stock levels can
be changed simultaneously. We start the procedure with the base stock level vector
obtained in the initialization phase. In each iteration we carry out one simulation run.
Before we discuss this phase in detail, we introduce two new variables. The variable
Ai(S, 7, k) is defined as the fraction of time during the simulation run with base
stock level vector S and scheduling policy 7 that the queue length (base stock level
minus current net inventory) of product i is equal to k. The variable C; (u, S, ) is an
auxiliary variable that represents the average total cost of product i associated with
base stock level u# and the estimated queue length distribution Ai(S, w, k), k> 0.1t
can be interpreted as the cost function in the classical Newsvendor Problem and is thus
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convex in u (cf. Porteus 2002).

u—1 oo

Ci(u,S,n):Z[Ai(s,n,k)~(u—k)-hi:| + > |:A,~(S,7t,k)-(k—u)~b,-] 3)
k=0 k=u+1

Let S™ represent the base stock level vector in iteration m. In each iteration m, we
simulate the system with scheduling policy # and base stock level vector S and
calculate the average cost and the normalized queue length histograms Ai (8™, 7, k),
k > 0 for all products i = 1, ..., I. In each iteration, we update all base stock levels
simultaneously according to:

sl = argmuin|:C,-(u, S”, n)i| l<i<lI )

Equations (3) and (4) simply tell that the base stock level of each product in the next
iteration is chosen such that it is optimal with respect to its normalized queue length
histogram in the current iteration. Substituting (3) into (4) and using the convexity of
Ci(u,S, ) in u, we can derive following (newsvendor) formula for the base stock
level vector in iteration m:

u

R b:

S{”“:inf[ueNO:ZAi(Sm,n,k)zbH_’hi] 1<i<lI 5)
k=0

We repeat this procedure until all base stock levels have converged (i.e., S;"‘H =S
forall productsi = 1, ..., I') oruntil the simulated average cost in the current iteration
is higher than the simulated average cost in the previous iteration. (We have no proof
for the convergence of this procedure, but we obtained convergence in all instances of
our numerical experiments.)

Note that in the case the scheduling decisions do not (directly or indirectly) depend
on the base stock level vector S, the normalized queue length histograms A (8", 7, k),
k > 0do not change and the iterative process terminates after only one simulation run.
Examples of scheduling policies where only one simulation run is needed are FCFS
and LQ. However, in most scheduling policies the calculated decisions depend on the
net inventory levels (and thereby on the base stock levels) and then typically more
than one simulation run is needed to reach convergence.

Phase 3: Local search

In this phase, we execute a simple local search procedure. The neighborhood of a
solution S consists of all non-negative base stock level vectors S’ that can be obtained
from S by increasing or decreasing the base stock level of exactly one product. For a
given base stock level S, we evaluate all its neighbors via simulation and jump to the
neighbor with the lowest average cost. The local search procedure terminates when
we have reached a local optimum. In Sect. 7, we investigate the contribution of the
local search phase (in terms of realized cost reductions and computational effort) to
the overall performance.
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5 Heuristic production policies

In this section, we describe four heuristic production policies for our problem. All
four production policies can be applied to problem instances of arbitrary size. They are
described in detail in Sects. 5.1-5.4. The first heuristic production policy is a production
policy proposed in Pefla Perez and Zipkin (1997). For problem instances where a
simple enumeration over all base stock level vectors is computationally infeasible, it
is the best production policy in the existing literature. The authors simply denote their
production policy as myopic allocation. In this paper, however, we denote it as My-EPC
for two reasons. First, we want to indicate that it consists of a scheduling policy and an
idleness policy. Second, it makes it easier to distinguish this production policy from
other production policies that use the same scheduling policy but a different method
for calculating base stock levels (cf. Sect. 5.2). The other three heuristic production
policies use the new simulation optimization method described in Sect. 4 to calculate
base stock levels. One method uses the myopic(T) scheduling policy and is denoted as
My-Sim. Another method uses the existing switching rule for production scheduling
and is denoted as SR-Sim. Finally, we present a production policy that uses a new
(rolling horizon) policy for scheduling. This policy is denoted as RH-Sim.

All scheduling policies that we consider in this paper are index policies. Let 0™ (z) €
{1, ..., 1} denote the product selected by scheduling policy = when the vector of net
inventory levels is equal to z. Then, scheduling policy 7 is an index policy if it can be
written as:

0" (z) = argmin G7 (z), 6)
1

where the Gf (z), 1 <n <1, arereal-valued (index) functions. We assume that ties
are broken with equal probabilities.

5.1 My-EPC

The My-EPC policy of Pefia Perez and Zipkin (1997) consists of the myopic(T)
scheduling policy and a one-dimensional optimization along the so-called equal pri-
ority curve (EPC) to determine appropriate base stock levels. In this search, candidate
base stock level vectors are evaluated using simulation. In this paper, we do not discuss
the myopic(T) scheduling policy in detail, but just give the expression for the index
functions:

—bi i + (hi +bi) i (1= O /)t if 2, >0

Gi(z) = —b; i otherwise

(N

The equal priority curve is parameterized by 6 € R and consists of all real vectors
S € R’ that meet the following condition:

GiS) =629 =---=G(S) =0 ®)

Since base stock levels must be integer, Pefia Perez and Zipkin (1997) round off S
when evaluating a particular value of 6. Unfortunately, they do not provide information
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on how they have rounded. In order to allow the reader to reproduce our results, we
now describe the method we have used.
First, we add Sp = 0 to the curve. Next, we use expression (8) to calculate n; =
argmin G7 (Sp) and we add S; = Sg + e,, to the curve. Then, we calculate n, =
1

argmin G7 (S1) and we add S = S +e;, to the curve. We repeat this procedure until
1

we have added so many vectors to the curve that we are sure that all further base stock
level vectors will have higher cost than the best base stock level vector added so far.

5.2 My-Sim

The My-Sim policy is a new production policy that only differs from the My-EPC
production policy in the method that is used to calculate the base stock levels. Instead of
searching along the equal priority curve, My-Sim uses the new simulation optimization
method discussed in Sect. 4.

5.3 SR-Sim

The SR-Sim policy is a new production policy that consists of the switching rule for
calculating scheduling decisions and the simulation optimization method for calculat-
ing base stock levels. The switching rule has been proposed in Ha (1997) as a heuristic
for scheduling production in a single server make-to-stock queue with two products
and a preemption. It is an index policy that prefers products that are backordered over
other products. Among all products with at least one backorder the switching rule
selects the product with the highest b; 1;. If there are no backorders, priority is given
to the product with the highest b; u; (1 —(z;/S;)). Below, we give a formal description
of the index functions G;(z) for the switching rule:

—bi pi (1 = (zi/8)) ifz>=0
Gi(z) =3 —b;i ui if min(z;) <Oandz; <0 ©)
0 if min(z;) <Oandz; >0

In the few contributions that apply the switching rule, enumeration has been used to
obtain optimal base stock levels. For problem instances with more than two products,
enumeration is however usually computationally prohibitive. Since we are interested
in production policies that are also applicable to large problem instances, we combine
the switching rule with our simulation optimization method for calculating base stock
levels.

5.4 RH-Sim

The RH-Sim policy is one of the main contributions of this paper. It consists of a rolling
horizon scheduling policy and the simulation optimization method for calculating base
stock levels. The scheduling part of the RH-Sim policy consists of an index policy
that uses the expected cost of schedules consisting of two products. The expected cost
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of a schedule is defined as the expected total cost arising during the time needed to
produce both products. The idea behind this new scheduling policy is a sample path
argument. Consider two products, i and j. If the expected cost of production schedule
(i, j) is lower than the expected cost of production schedule (j, i), then product i
seems to be needed more urgently than product j and we favor product i over product
Jj. In the case of more than two products, the index for product i is the weighted sum
of the costs of all schedules (7, j) and (j, i) with j # i. In Sect. 5.4.1 we discuss the
two-product case, and in Sect. 5.4.2 the multi-product case.

The advantage of comparing the schedules (P;, P;) and (P}, P;) is that both sched-
ules have the same duration and lead to the same end state (for all possible realizations
of inter-arrival times and production times). Consequently, we can make a fair com-
parison between these two schedules without having to look beyond the completion
time of these schedules. Before we explain the rolling horizon scheduling policy in
detail, we introduce some useful definitions in Table 2.

5.4.1 Two products case

Assume we have two products, i and j. The RH-Sim policy selects product i if pro-
duction schedule (7, j) has lower expected total cost than schedule (j, i), and product
J otherwise. Instead of comparing C;;(z) with Cj;(z), we compare AC;;(z) with
ACj;(z) because this sirglvpliﬁes thg calculations considerably. Note that this transfor-
mation is allowed since C;;(z) = Cj;(z). We derive an exact expression for AC;;(z)
by calculating the expected total cost of production schedule (7, j) over all possible
realizations of inter-arrival times and the production times P; and P;. The variable
AC;j(z) can be interpreted as the cost savings associated with executing produc-
tion schedule (i, j) compared to producing nothing. Figure 2 illustrates how we can
calculate AC;;(z). In this figure, the solid lines show possible evolutions of the net

Table 2 Notation and

definitions for RH-Sim Random variables
production policy P; Production time of product j
Probabilities
Sij ) Probability that during a random production time of

product j the demand of product i is equal to u
Cost variables

Cij(z) Expected cost caused by products i and j during
production schedule (i, j) as a function of the
initial inventory levels z

Ei () Expected cost caused by products i and j in time
interval [0, P; + Pjlasa function of the initial
inventory levels z if no items produced during the
time interval [0, P; + Pj]

AC;j(z) Cij(@) — Cjj(2)
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Fig. 2 Evolution of net inventory levels during production schedule (i, j)

inventories of product i and product j during the execution of production schedule
(@ J)-

A net inventory decrease represents a demand arrival and a net inventory increase
represents a product completion. The dashed lines show the evolution of the net inven-
tories if no items would be produced. To obtain AC;;(z), we must calculate for product
i and product j the cost difference between the solid line and the dashed line during
the forecast horizon P; + P;. Note that for product j this difference is always O
because its net inventory is only increased at the very end of the interval [0, P; + P;].
Consequently, AC;;(z) only depends on z; and thus we write from now on AC;;(z;).

To calculate AC;;(z;) we condition on the demand for product i during P; (denoted
as 1) and the demand for product i during P; (denoted as w) and calculate the expected
additional backordering cost and the expected additional inventory holding cost. We
distinguish three cases: (i) the next backorder for product i occurs before r = P;, (ii)
the next backorder for product i occurs after t = P; + P}, and (iii) the next backorder
for product i occurs at P; <t < P; + P;.

In the first case, we save the backordering cost of one item of product i during
the entire production time of one item of product j. In the second case, we have
additional inventory holding cost one item of product i during the entire production
time of one item of product j. In the third case, the cost savings depend on the
moment when the first backorder of product i would occur if no items would be
produced. At time ¢ = P; the net inventory of product i is equal to (z; — u). Let
E(Pj|w) represent the expected production time of one item of product j under the
condition that during this production time the demand for product i is equal to w.
Then, we have additional inventory holding costs until the arrival of the (z; —u + 1)th
demand during the production time E(P;|w). During the remaining part of E(P;|w)
we save backordering costs. Using the assumption that demand inter-arrival times are
independent and identically exponentially distributed, we can argue that on average
the (z; — u + 1)th demand will arrive E(Pj|w)(z; — u + 1)/(w + 1) time units after
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t = P;. Combining the three components of the expected total cost savings leads to
the following expression for AC;;(z;):

ACij(zi) = [1 - Zijo fii(u)] bi,%j - Zilo iZ_JO fii(u) fij(w) E(Pjlw) h
+ zio z lfii(u) flj(w) E(P]|w) |:_hi . Zi;_l/:_-{-l +bl ) w;i_l,'_u]
u=0 w=z;—u+

(10)
Usually, equation (10) can be calculated easily because f;; (1), fij(w) and E(Pj|w)
have simple closed-form expressions for Poisson demand and exponential or deter-
ministic production times. First, consider exponential production times. From basic
probability theory, we know that the number of Poisson arrivals (with rate A) during an
exponentially distributed time interval with mean 1/u has a geometric distribution on
the set of natural numbers (including zero) with parameter p = 1/(1 + (A/u)). This
immediately implies that f;; (u) = (1 — p)* p, u € Ny, with p = 1/(1 + (A; /i)
and fij(u) = (1 — p)* p, u € Ny, with p = 1/(1 + (A;/pt;)). In Appendix 9 we
show that for exponentially distributed production times it holds that E(Pjlw) =
(w + 1)/(A; + wj). Next, consider deterministic production times. Then, it is easy
to see that f;;(u) and f;;(u) have Poisson distributions with parameters A;/u; and
Ai/uj, respectively, and that E(P;|lw) = E(P;) = 1/u;. We conclude this section
with a formal description of the index functions G;(z) and G ;(z) for the two products
case.

Gi(z) = ACij(zi) (11a)
Gj(Z) = ACji(Zj) (11b)

5.4.2 Multi-product case

We now extend the RH-Sim policy to systems with more than two products. The
idea is to calculate for each product i an index that is the weighted sum of
[AC;j(z;) — ACji(z;)] over all products j # i. Since we consider an average cost
problem, it is reasonable to weigh the expected relative cost AC;;(z;) of production
schedule (i, j) with the inverse of the average duration of that schedule. This yields
the following general expression for the index functions G;(z) for the RH-Sim policy
with I products:

Gi() =Y, 1 [ACij(z) — ACji(z))] 1<i<I 12)
JFEL KR

6 Numerical experiments
In this section, we investigate the performance and the structure of the new pro-
duction policies via numerical experiments. We have the following objectives in

conducting numerical experiments. First, we investigate the optimality gap of My-
Sim, SR-Sim, and RH-Sim and compare it against the optimality gap of the existing
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My-EPC production policy. Second, we investigate the potential cost savings of the
three new production policies compared to My-EPC on a wide range of large problem
instances and explore how the relative performance depends on the various problem
characteristics.

To meet the first objective, we define a numerical experiment with a test bed con-
taining problem instances with two products and exponentially distributed production
times (Experiment I, Sect. 6.1). For all problem instances in this test bed, we can cal-
culate the optimal production policy. In this experiment, we use relative value iteration
to evaluate and compare the production policies. In Sect. 6.2, we carry out a detailed
optimality gap analysis and characterize the proposed RH-Sim policy.

To meet the second objective, we define a numerical experiment with a test bed
containing a wide range of problem instances with ten products (Experiment II, Sect.
6.3). In this experiment, we cannot determine the optimal production policy due to
the large problem sizes. Therefore, we use discrete event simulation to evaluate and
compare the heuristic production policies.

6.1 Experiment I

In this experiment, we consider problem instances with two products, independent
Poisson demand, and independent exponentially distributed production times. We
assumethat Ay /1 = Ao/ = (1/2) p,and b1/ hy = ba/ hy = b/ h. Costasymmetry
is measured by the ratio 4>/ 1, and the inventory holding cost of product 1 is always
equal to 1. We examine three production rate vectors ., namely u = (1, 1), u = (1, 4)
and u = (4, 1); three values of p (0.90, 0.80, and 0.70); three values of hy/h; (0.9,
0.7, and 0.5); and two values of b/h (20 and 80). This test bed only differs in two
minor aspects from the test bed used in Pefia Perez and Zipkin (1997): (i) we use three
utilization rates instead of eight, and (ii) we have replaced the production rate vectors
p=({,2)and p = (2,1) by o = (1,4) and o = (4, 1) in order to gain better
insights into the impact of non-identical production rates on the performance of the
various production policies. The optimal average costs as well as the optimality gaps
of the heuristic production policies are shown in Tables 3, 4 and 5.

In the discussion of the results of Experiment I, we distinguish between identical
production rates (Table 3) and non-identical production rates (Tables 4, 5). For identical
production rates, we see that the optimality gaps of all evaluated production policies
are very small. For every evaluated production policy, the average optimality gap
is less than 1% and the maximum optimality gap is less than 3 %. We see that all
four heuristic production policies outperform the other three on at least one problem
instance. This means that none of the four evaluated production policies dominates
any other. For non-identical production rates, the differences are much bigger. We see
that for all production policies the optimality gaps increase when the ratio between the
higher and the lower production rate increases. The maximum optimality gaps for My-
EPC, My-Sim, SR-Sim, and RH-Sim are, respectively, 112.3, 56.9, 15.8, and 11.6 %.
It is remarkable to see how the performance of My-Sim, and in particular My-EPC,
degrades dramatically when the production rates differ. SR-Sim and SH-Sim show
much more robust behavior in this respect. Further, we see that RH-Sim outperforms
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Table 3 Experiment I: gap analysis for p = (1, 1)

Input parameters Avg cost Optimality gap (%)

P ha/hy b/h Opt My-EPC My-Sim SR-Sim RH-Sim
0.9 0.9 20 26.85 0.2 0.2 0.8 0.9
0.9 0.9 80 38.60 0.1 0.1 1.1 0.8
0.9 0.7 20 22.21 0.3 0.3 0.5 1.4
0.9 0.7 80 31.79 0.5 0.5 0.7 0.7
0.9 0.5 20 17.30 1.7 1.4 0.8 1.0
0.9 0.5 80 24.70 0.9 0.8 0.9 2.7
0.8 0.9 20 13.14 0.1 0.1 0.4 0.1
0.8 0.9 80 18.82 0.1 0.1 0.3 0.7
0.8 0.7 20 11.29 0.4 0.4 1.0 0.4
0.8 0.7 80 16.10 0.4 0.4 1.1 1.0
0.8 0.5 20 9.28 1.0 1.0 0.7 0.8
0.8 0.5 80 13.22 1.5 1.0 1.1 1.0
0.7 0.9 20 8.59 0.0 0.0 0.0 0.0
0.7 0.9 80 12.26 0.1 0.2 0.2 0.2
0.7 0.7 20 7.53 0.8 0.8 0.8 0.6
0.7 0.7 80 10.73 0.0 0.0 0.7 0.0
0.7 0.5 20 6.42 0.3 0.3 0.3 0.0
0.7 0.5 80 9.12 2.0 1.0 0.9 1.0
Average 0.6 0.5 0.7 0.7
Maximum 2.0 1.4 1.1 2.7

all other three heuristic production policies on all 36 problem instances with non-
identical production rates. Finally, we see larger optimality gaps for the instances in
Table 5, where the cheap product has the long production time, than for the instances
in Table 4, where the expensive product has the long production time. This seems to be
related to option value effect as described in Sect. 3.3. This effect seems to be stronger
for the instances where the cheap product has the long production time.

6.2 Optimality gap analysis

As described in Sect. 3.3, the optimal production policy must not necessarily belong to
the class of base stock policies. This means that we can distinguish three root causes for
sub-optimality of heuristic production policies: (i) sub-optimality of the scheduling
logic, (ii) sub-optimality of the method for calculating base stock levels, and (iii)
sub-optimality due to the imposed base stock structure. To examine the contribution
of each of these three factors to the reported optimality gaps, we carry out a deeper
optimality gap analysis on those problem instances in Tables 3, 4 and 5.

To investigate the contribution of the three root causes to the observed optimality
gaps, we compare the four heuristic production policies against the optimal base stock
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Table 4 Experiment I: gap analysis for u = (1, 4)

Input parameters Avg cost Optimality gap (%)

P ha/hy b/h Opt My-EPC My-Sim SR-Sim RH-Sim
0.9 0.9 20 23.65 20.0 17.0 39 1.6
0.9 0.9 80 33.81 48.5 30.5 35 2.5
0.9 0.7 20 22.12 17.5 14.5 34 1.6
0.9 0.7 80 31.65 25.1 18.2 3.0 1.9
0.9 0.5 20 20.40 16.1 13.0 33 2.8
0.9 0.5 80 29.29 214 14.8 29 1.8
0.8 0.9 20 13.32 34.5 23.6 6.7 4.1
0.8 0.9 80 19.00 454 27.9 6.1 4.5
0.8 0.7 20 12.11 30.6 19.9 49 2.9
0.8 0.7 80 17.29 39.5 23.3 4.7 33
0.8 0.5 20 10.83 19.2 14.4 3.6 2.7
0.8 0.5 80 15.49 332 18.6 3.8 2.6
0.7 0.9 20 9.41 30.1 21.2 8.2 6.4
0.7 0.9 80 13.45 55.4 28.5 8.1 6.6
0.7 0.7 20 8.40 27.6 18.5 6.3 49
0.7 0.7 80 12.03 54.7 25.1 7.0 5.1
0.7 0.5 20 7.39 22.0 13.4 39 2.9
0.7 0.5 80 10.56 44.7 18.5 4.7 3.8
Average 32.5 20.0 4.9 34
Maximum 55.4 30.5 8.2 6.6

production policy. The optimal base stock production policy differs from the optimal
production policy in that it must belong to the class of base stock policies (cf. Fig. 1).
To obtain the optimal base stock production policy, we enumerate over a large set of
candidate base stock level vectors and solve for each candidate base stock level vector
an MDP that is very similar to the one described in Sect. 3.2. In fact, we only need to
make a small adjustment to the set of admissible actions in order to guarantee that the
solution of the MDP is indeed a base stock policy. Instead of <7 (z, 0) = {0, 1, ..., I},
it is sufficient to use &/ (z,0) = {1 < i < I|z; < S;}. The optimal base stock
production policy is denoted as B-Opt.

For the selected problem instances, we also calculate the production policies con-
sisting of one of the three heuristic scheduling policies (myopic(T), switching rule,
rolling horizon) together with base stock levels that have been optimized with respect
to the applied scheduling policy. These policies are denoted as My-Opt, SR-Opt, and
RH-Opt, respectively, and have been obtained via full enumeration over a wide range
of candidate base stock level vectors. The results are shown in Table 6.

Note that B-Opt, My-Opt, SR-Opt, and RH-Opt can only be calculated for prob-
lem instances with a small number of products (typically 2-3) because its derivation
requires solving multiple MDPs. Table 6 shows that the performance of RH-Sim is
very close to the performance of the optimal base stock policy. The maximum gap
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Table 5 Experiment I: gap analysis for g = (4, 1)

Input parameters Avg cost Optimality gap (%)

P ha/hy b/h Opt My-EPC My-Sim SR-Sim RH-Sim
0.9 0.9 20 22.66 23.3 19.9 4.9 2.0
0.9 0.9 80 32.37 55.8 37.1 4.7 2.1
0.9 0.7 20 19.19 27.4 23.5 6.5 32
0.9 0.7 80 27.41 64.0 41.8 52 2.2
0.9 0.5 20 15.69 54.6 422 9.0 34
0.9 0.5 80 22.39 77.8 52.0 7.1 3.7
0.8 0.9 20 13.10 39.0 27.6 8.5 4.9
0.8 0.9 80 18.70 51.8 329 7.1 5.5
0.8 0.7 20 11.48 44.6 32.6 10.7 6.3
0.8 0.7 80 16.39 64.3 42.7 8.8 5.6
0.8 0.5 20 9.83 51.0 37.2 14.0 6.9
0.8 0.5 80 14.05 112.3 56.9 11.0 7.0
0.7 0.9 20 9.38 32.3 23.7 9.9 8.2
0.7 0.9 80 13.43 60.6 32.1 9.6 7.8
0.7 0.7 20 8.36 36.8 279 12.4 8.0
0.7 0.7 80 11.97 68.1 375 11.2 9.4
0.7 0.5 20 7.32 53.5 39.2 15.8 9.8
0.7 0.5 80 10.49 78.2 434 13.8 11.6
Average 55.3 36.1 9.5 6.0
Maximum 112.3 56.9 15.8 11.6

Table 6 Experiment I: detailed gap analysis for selected problem instances

Input parameters Optimality gap (%)

w p ha/hy b/h B-Opt My-Opt My-EPC My-Sim SR-Opt SR-Sim RH-Opt RH-sim

(1,1) 09 0.7 20 0.1 0.2 0.3 0.3 0.5 0.5 1.4 1.4
(1,1) 09 05 80 0.1 0.8 0.9 0.8 0.9 0.9 2.6 2.7
(1,4) 0.7 09 20 55 212 30.1 21.2 7.9 8.2 55 6.4
(1,4) 0.7 09 80 6.6 285 55.4 28.5 8.1 8.1 6.6 6.6
(1,4) 0.7 0.7 80 5.1 247 54.7 25.1 6.3 7.0 5.1 5.1
4,1) 07 07 80 94 371 68.1 37.5 11.2 11.2 9.4 9.4
4,1) 07 05 20 9.7 339 53.5 39.2 13.4 15.8 9.8 9.8

4,1) 07 05 80 11.4 434 78.2 43.4 13.8 13.8 11.4 11.6

between RH-Sim and B-Opt is only 2.6 % and for 6 out of 9 problem instances it is
even less than 1 %. Table 6 also indicates that the simulation optimization method for
calculating base stock levels performs very well. If we compare RH-Sim with RH-Opt,
we see that the simulation optimization method manages to find the optimal base stock
levels in 6 out of 9 problem instances. The table also shows that this method does not
only perform very well in combination with the rolling horizon scheduling policy,
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but also in combination with the switching rule and the myopic(T) scheduling policy.
Furthermore, we see that—even under optimized base stock levels—the optimality
gap of the myopic(T) scheduling policy can grow to 44.3 %. This is much bigger than
the reported optimality gaps in Pefia Perez and Zipkin (1997). The reason for this
discrepancy is that our test bed contains problem instances where the production rates
differ by a factor four whereas in Pefia Perez and Zipkin (1997) production rates never
differ by more than a factor two. Apparently, the myopic(T) scheduling policy has
difficulties handling products with (highly) different average production times.

We conclude this section with a characterization of RH-Sim. For this purpose,
we have compared the production decisions calculated by RH-Sim with the optimal
production decisions for problem instances in Experiment I where the optimality gap
of RH-Sim is relatively big. We made two important observations. First, RH-Sim
belongs—by construction—to the class of base stock policies whereas the optimal
production policy for several problem instances does not. Second, RH-Sim more often
selects the product with the lower inventory holding cost than the optimal production
policy. This behavior particularly occurs when on-hand stock is high and the system
utilization rate p is also high. An intuitive reason for this behavior would be that RH-
Sim does not look more than two scheduling decisions ahead. Assume on-hand stocks
are high, then the stockout probabilities during the forecast horizon (i.e., during the next
two scheduling decisions) are very low. Consequently, RH-Sim will select the product
with the lower inventory holding cost (cf. expression (10)). However, especially in the
case of high utilization rates, it may be wiser to produce an item of the product with
the higher inventory holding cost rate in order to avoid high backordering costs in the
future.

6.3 Experiment I1

In this experiment, we compare the three new production policies (My-Sim, SR-Sim,
and RH-Sim) against My-EPC on a test bed containing problem instances with ten
products. In contrast to Experiment I, the problem instances in this experiment are
too large for an MDP analysis. Consequently, all results in this experiment have been
obtained via discrete event simulation. When evaluating the performance of different
production policies on a particular problem instance, we use the same random seed
Feval and the same simulation length. In order to guarantee unbiased cost estimates,
the random seed r,yq; has a different value than the random seed 7g;,—op, that is used
inside the simulation optimization method for calculating base stock levels.

The length of each simulation run depends on the problem instance and is chosen
such that the probability that the simulated average cost differs more than 1 % from its
expected value is less than approximately 5 %. To achieve this, we adopt the method
of non-overlapping batch means (see e.g., Steiger and Wilson 2001). We execute this
method with a warming-up period of 2,000,000 demands and 20 batches, each of
initial size 2,000,000 demands. As long as the desired 99 % accuracy is not reached,
the batch size is doubled and the existing batches are reorganized. For all problem
instances and all production policies in this experiment, the desired 99 % accuracy has
been reached with a batch size of 8,000,000 maximum.
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The test bed in this experiment is a full factorial design on five parameters: (i) the
maximum demand rate across all products (A™**); (ii) the type of coupling between
demand rates, production rates, and inventory holding costs (‘coupling’); (iii) the
utilization rate (p); (iv) the ratio between backordering costs and inventory holding
costs (b/h); and (v) the shape of the production times distributions (‘shape’). The
minimum demand rate across all products (A™") is set equal to 1. We consider three
values for L™ (2,4, and 8); four couplings between the demand rates, production rates,
and inventory holding costs (‘A’, ‘B’, ‘C’, and ‘D’); four values for the utilization rate
p (0.70, 0.80, 0.90, and 0.95); two values for the ratio b/ i (20 and 80); and two shapes
of the production time distributions (deterministic and exponential). The total number
of all possible combinations for these parameters is thus 3 x 4 x4 x 2 x 2 = 192. The
following procedure describes how to construct a problem instance from the values of
these five parameters.

Step 1 Set A; = AM 4 (xmax _ miny ; _ 1) /9 j =1,...,10.

Step 2 Calculate production rates, and inventory holding costs.
If coupling= ‘A u; =1,h; =1,i =1,...,10.
If coupling = ‘B’: ) = A;, hy = 1/, i =1,...,10.
If coupling=‘C: ;= 1,i =1,3,...,9: u) = Amin pmax i — 24 10;
hi =1/u.,i=1,...,10.
If coupling=‘D*: pu; = 1,i =1,3,...,9% u} = Amin pmax i — 02 4 10;
hi=1/x,i=1,...,10.

Step 3 i = ;- [(l/p) Z()\i/l’«i):|, i=1,...,10.
Stepd4b; =h; - b/h,i =1,...,10.

In Experiment II, we take the existing My-EPC policy as the reference solution
and calculate for the three new production policies (My-Sim, SR-Sim, RH-Sim) the
average cost reductions over all 192 problem instances and all subsets where one
of the factorial design parameters is fixed to one of its admissible values. Besides
the average cost reductions (shown in bold face), we also show the minimum and
the maximum cost reductions (shown in parenthesis). The results are shown in
Table 7.

Table 7 shows that all three new production policies outperform the existing myopic
allocation approach. The average cost reductions for My-Sim, SR-Sim, and RH-Sim
are, respectively, 2.3, 3.5, and 4.5 %. We also see that RH-Sim has a better aver-
age performance than the other three production policies on all 15 subsets, except
the subset with ‘coupling’ = ‘D’ where SR-Sim performs 0.2 % better. Further, we
see that sometimes the new production policies do slightly worse than the existing
myopic allocation approach (indicated by the negative numbers in the table). How-
ever, the cost increases are low (in particular for RH-Sim and My-Sim), whereas
the cost reductions that can be achieved are high (20-30%). So in sum, RH-Sim
seems most attractive as it realizes the highest average cost reduction and is very
robust. This is very much in line with the results obtained in Experiment I (cf.
Sect. 6.2).
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Table 7 Experiment II: aggregated results
Test bed subset N Cost reduction (%)

My-Sim SR-Sim RH-Sim
All instances 192 23(—1.6,19.3) 3.5(—4.4,32.0) 4.5(-1.3,32.7)
Amax — 9 64 1.3 (—1.6,15.3) 1.7(-3.0, 20.8) 25(-1.2,19.9)
Amax — 4 64 1.9 (—1.3,12.5) 2.8(—4.4,22.0) 39(—1.3,222)
Amax — g 64 3.5(—1.0,19.3) 5.9(-3.7,32.0) 7.0 (—0.8,32.7)
Coupling ="A’ 48 0.1(-1.2,1.7) —1.6(—44,1.4) 0.1 (—-1.2,1.7)
Coupling =’B’ 48 23(—-13,174) 29(-04,174) 4.3 (—1.3,18.8)
Coupling =°C’ 48 0.4 (—1.0,2.1) —0.4(-24,23) 0.7 (—-0.8,3.3)
Coupling =’D’ 48 6.3 (—1.6,19.3) 13.0 (0.0, 32.0) 12.8 (0.0, 32.7)
p =0.70 48 2.7(=0.7,17.4) 2.8(—3.2,24.0) 4.3 (0.0, 24.7)
p =0.80 48 3.1(—1.6,19.3) 3.6 (—4.4,32.0) 5.3(-0.4,32.7)
p =0.90 48 2.1(—1.2,12.8) 3.8(—3.5,30.5) 4.6 (—1.2,30.3)
p =095 48 1.1(—1.3,8.6) 3.7(-1.7,25.7) 3.7(—1.3,23.2)
b/h =20 96 2.0(—1.6,16.8) 3.0(—4.4,28.9) 4.1 (-0.8, 28.6)
b/h =80 96 2.6(—1.2,19.3) 3.9(-3.7,32.0) 4.9 (—1.3,32.7)
shape = "det.’ 96 1.7 (—1.6,17.4) 1.9 (—4.4,19.8) 3.2 (—1.2,20.0)
shape = "exp.’ 96 29 (—1.3,19.3) 5.0 (-2.9,32.0) 5.8(—1.3,32.7)

An interesting observation from a technical point of view, is the strong performance
of SR-Sim. In contrast to the other production policies, it does not use the demand rates
when calculating scheduling decisions. So apparently, the simulation optimization
method for calculating base stock levels anticipates the scheduling logic so well that
this information is not needed in the scheduling phase.

We conclude this section with an investigation on how the relative performance
of the three new policies (and in particular RH-Sim) depends on various prob-
lem characteristics. Our most important observation is that the relative performance
strongly depends on the coupling between the demand rates, production rates, and
inventory holding costs. In line with the results obtained in Experiment I, we see
that all heuristic production policies perform about equally well in the case of
identical production rates (case ‘A’). If the production rates grow linearly with
the demand rates (case ‘B’), RH-Sim outperforms the existing myopic allocation
approach. However, if we compare the results for case ‘C’ with the results for case
‘D’, we see that the spread in the production rates cannot be the only reason for
the poor performance of the myopic allocation approach since we use the same
demand rates and production rates. Apparently, the cost structure also plays a role
(in case ‘C’ the inventory holding costs and backordering costs scale with the aver-
age production time, where in case ‘D’ they scale with the average inter-arrival
time).
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A related observation is that the achieved cost reductions of the three new production
policies get bigger if the spread in the demand rates (measured via A™*) gets bigger.
In light of the previous discussion on the couplings, this is not really a surprise as the
spread in the production rates and the spread in the cost parameters get bigger if the
spread in the demand rates gets bigger. Finally, we see that the cost reductions are
bigger in the case of exponentially distributed production times than in the case of
deterministic production times and that the utilization rate p and the ratio b/h have
little impact on the relative performance.

7 Performance of the simulation optimization method

In this section, we investigate the computation times of the simulation optimization
method for calculating base stock levels (cf. Sect. 4) and the effectiveness of its three
phases: initialization, greedy improvement, and local search. In Table 8, we show
for each scheduling policy, the performance of the method in Experiment II. In the
column Greedy, we show the average cost reduction (shown in bold face) as well as
the minimum and the maximum cost reduction (shown in parenthesis) obtained at the
end of the greedy phase compared to the cost obtained at the end of the initialization
phase. In the column Local search, we show the average, minimum, and maximum
additional cost reduction obtained in the local search phase. Finally, we show the
maximum and the average required CPU time (in minutes) for the entire simulation
optimization approach (i.e., sum of the CPU times of all three phases). The reported
CPU times are obtained on an Intel 2.16 GHz processor with 8 GB RAM.

Table 8 shows that the greedy phase in the simulation optimization method for
calculating base stock levels often realizes big cost reductions. The table also shows
that local search phase is much less effective, although it still achieves significant
improvements for certain problem instances. The last two columns show that the
computation times of our simulation optimization method are acceptable. Only for
a few problem instances (all with a utilization rate of 0.95) it needs more than 1 h,
but never more than 5 h. Not shown in the table is that the greedy phase usually only
requires 1, 2, or 3 simulation runs (and never more than 7) and that the local search
phase is often responsible for more than 90 % of the total CPU time.

Table 8 Performance simulation optimization method for calculating base stock levels

Test bed Policy Greedy impr (%) Local search impr (%) CPU time (min)
Avg Max
Experiment II My-Sim 10.8 (0.0, 37.7) 1.6 (0.0, 8.5) 13.7 68.8
(exp. prod. times) SR-Sim 13.6 (0.0, 38.2) 1.3 (0.0, 4.7) 13.2 78.5
RH-Sim 12.2 (0.0, 37.8) 1.6 (0.0, 6.7) 17.3 64.5
Experiment II My-Sim 21.6 (0.0, 74.1) 1.7 (0.0, 7.9) 16.1 158.1
(det. prod. times) SR-Sim 23.5 (0.0, 74.1) 0.9 (0.0, 5.5) 13.7 155.6
RH-Sim 22.0 (0.0, 74.7) 1.6 (0.0, 7.9) 18.6 258.9
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8 Conclusions

We conclude by summarizing our main results and pointing out opportunities for future
research. We studied a production/inventory system consisting of one production line
and multiple products. Finished goods are kept in stock to serve stochastic demand.
Demand is fulfilled immediately if there is an item of the requested product in stock and
otherwise it is backordered and fulfilled later. The objective is to minimize holding and
backordering costs. We developed a new dynamic production policy that consists of a
rolling horizon scheduling policy and a simulation optimization method for calculating
base stock levels. The developed simulation optimization method is generic in the sense
that it can be combined with any scheduling policy.

In this study, we compared the performance of our proposed production policy
against the myopic allocation policy proposed in Pefia Perez and Zipkin (1997). To
the best of our knowledge, this is the best existing production policy that is applicable
to problem instances with more than just 2 or 3 products. First, we showed on a test bed
with two products that the optimality gap of our proposed production policy is small.
The average and the maximum optimality gap over all examined problem instances
are 3.4 and 11.6 %, respectively. This is a clear improvement compared to the myopic
allocation policy. Second, we showed that the simulation optimization method finds
near-optimal base stock levels for all evaluated scheduling policies. Third, we showed
that the difference in total cost between the optimal production policy and the optimal
base stock production policy can be more than 10 % for certain problem instances.
Finally, we showed on a test bed with ten products that the proposed production policy
outperforms all other evaluated production policies. In particular, it can achieve cost
reductions of up to 30 %, compared to the myopic allocation approach in the case of
(very) heterogeneous products.

For future research, we suggest to further investigate the structure of the opti-
mal production policy for systems with a non-preemptive discipline. The remarkable
observations in Example 1 in Sect. 3.3 may serve as a good starting point for this
investigation. Furthermore, we believe that there are interesting opportunities to apply
the rolling horizon scheduling policy and the simulation optimization method for cal-
culating base stock levels to other environments, in particular repairable inventory
systems. Adan et al. (2009) consider such a system for expensive spare parts. They
present an exact method for (simultaneously) optimizing (i) the initial spare parts sup-
plies and (ii) static priorities for scheduling the outstanding repair jobs. It would be
interesting to compare their static approach with our dynamic approach.

Acknowledgements We kindly thank the associate editor and two anonymous referees for their helpful
suggestions to improve the paper.

9 Calculation of E(P|w)

Let P represent an exponentially distributed time variable with mean 1/u. Consider
a queuing system where customers arrive according to a Poisson distribution with
constant rate A. In this appendix, we show that E(P|w), the expectation of a time
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interval given that during this time interval w customer arrivals occur, is equal to

(w+1)/(A+ ). Using the definition of conditional expectation and the property that

the number of Poisson arrivals during an exponentially distributed time interval with

mean 1/u has a geometric distribution with success probability ﬁ, we obtain the
I

following expression for E(P|w):

()Lﬂl))! ad _)L ! dt
13a
(1-—L-w (o) (132)

A
1+ 1+

t ue_/“

o —9

E(P|w) =

. . w+2 w1 . . .
Rearranging terms, and using that WFM()TI)'t e~ (*+1 i5 the probability density

function of the Erlang distribution with parameters (w +2) and (A + ), we can rewrite
expression (13a) as follows:

(Atp)w+2 (w+1)!
E(P|lw) = (13b)

w
| _ 1 1

LAY (w+1)

- Gtpaye (13¢)

w
) (7)
( 145 1+

Finally, we obtain the desired result E(P|w) = (w + 1)/(A + p) from (13c) via
straightforward algebraic manipulations.

o0
pA (wt1) f(x+mw+2 M 0t
0
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