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We study real-time demand fulfillment for networks consisting of multiple local warehouses, where
spare parts of expensive technical systems are kept on stock for customers with different service con-
tracts. Each service contract specifies a maximum response time in case of a failure and hourly penalty
costs for contract violations. Part requests can be fulfilled from multiple local warehouses via a regular
delivery, or from an external source with ample capacity via an expensive emergency delivery. The objec-
tive is to minimize delivery cost and penalty cost by smartly allocating items from the available network
stock to arriving part requests. We propose a dynamic allocation rule that belongs to the class of one-step
lookahead policies. To approximate the optimal relative cost, we develop an iterative calculation scheme
that estimates the expected total cost over an infinite time horizon, assuming that future demands are
fulfilled according to a simple static allocation rule. In a series of numerical experiments, we compare
our dynamic allocation rule with the optimal allocation rule, and a simple but widely used static alloca-
tion rule. We show that the dynamic allocation rule has a small optimality gap and that it achieves an
average cost reduction of 7.9% compared to the static allocation rule on a large test bed containing prob-
lem instances of real-life size.
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1. Introduction portation modes, and stocking locations at close distance to the
customer site.

We consider demand fulfillment for networks consisting of OEMs often serve customers with different service deadlines

multiple local warehouses, where spare parts of expensive techni-
cal systems are kept on stock. Downtime costs (like opportunity
cost in case of lost production, liability cost, or loss of goodwill)
are usually high, and can easily run into thousands of euros per
hour. Therefore, it is important that the availability of the systems
is high and that down-situations are recovered quickly. Original
Equipment Manufacturers (OEMs) of high-tech equipment usually
sell their equipment with a variety of service contracts at different
prices. Typically, these service contracts commit to maintenance
service within 2 hours, 4 hours, 8 hours, or the next, or second next
business day. Due to strong fluctuations in spare parts demand and
strict service deadlines, spare parts logistics execution must be
responsive. This is achieved by means of fast call-handling, accu-
rate (remote-) problem diagnosis, 24 hours operations, fast trans-
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from the same network. Because of the pooling effect, this requires
(much) lower investments in inventory than operating separate
networks per contract type. To serve customers with premium
contracts in time, OEMs must establish dense same day networks
of stocking locations. Consequently, many customers can be served
within the service deadline from multiple stocking locations.

A major challenge for the OEM is to minimize inventory holding
cost, replenishment cost and fulfillment cost while providing the
promised service to its customers. OEMs can simultaneously influ-
ence cost and customer service in two possible ways: (i) through
calculating appropriate base stock levels for all warehouses, and
(ii) through determining an appropriate allocation rule for select-
ing the warehouse that is used to fulfill a real-time spare parts
demand.

Whereas the calculation of base stock levels is a tactical plan-
ning problem where decisions are usually taken every 3-6 months,
the calculation of a stock allocation rule is an operational planning
problem where usually many decisions must be taken each day. As
for many hierarchical planning problems in Supply Chain Manage-
ment, it is not possible to solve these two problems simulta-
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neously. In this study we focus on the operational planning prob-
lem and assume that the base stock levels are given. Our aim is
to develop an allocation rule that performs well for arbitrary base
stock level vectors. Such an allocation rule can serve as a plug-in
for methods that calculate appropriate base stock levels. In
Section 6, we discuss methods for calculating base stock levels that
anticipate our proposed allocation rule.

In practice, we see that many OEMs have implemented a simple
static allocation rule that fulfills a real-time spare parts demand
from the closest warehouse with stock at hand. See Reijnen et al.
(2009) and Kranenburg and Van Houtum (2009) for case studies
at OEMs of high tech equipment. This allocation rule is popular be-
cause it only requires static time/distance information and the set
of warehouses with stock at hand. One drawback of this rule is that
it does not use some potentially valuable information for making
smart allocation decisions: real-time stock level information, and
demand forecast information. Another drawback of this rule is that
it does not consider customer base heterogeneity. As a result, each
customer, despite generating different revenues to the OEM, re-
ceives a similar treatment in terms of customer service. This is
unattractive for the OEM for two reasons: First, customers who
bought expensive high-end contracts might consider this unfair,
and this might disturb the customer relationship. Second, high
base stock levels are needed to provide the promised service to
customers with tight service deadlines. It is thus attractive to dif-
ferentiate between the customers based on their service contract.
Customer differentiation can be realized using critical levels. For
single location models this is often the only choice. In networks
however, customer differentiation can also be realized through dy-
namic allocation. In this paper we explore this direction.

Our goal in this paper is to investigate the benefits of using real-
time stock level information and demand forecast information for
real-time demand management in spare parts inventory networks.
We summarize our problem setting as follows: We consider a sin-
gle item, single echelon, multi location inventory network where
spare parts are kept on stock for customers with different service
contracts. Each service contract specifies a maximum response
time in case of a failure, and contract violations are penalized.
The objective is to minimize the sum of the average annual deliv-
ery cost and the average annual penalty cost by smartly allocating
items from the available network stock to arriving part requests.
What makes this task challenging is that the choice to fulfill a part
request from a particular source location does not only cause a cer-
tain direct cost, but also impacts the opportunities to fulfill de-
mands in the near future (at least until the allocated item is
replenished again). We present an average cost Markov Decision
Process (MDP) formulation of this problem, which enables us to
compute the optimal allocation rule for small problem instances.
To handle problem instances of real-life size, we develop a one-
step lookahead policy where we approximate the optimal relative
cost with an estimate of the relative cost under a simple static allo-
cation rule. In a series of numerical experiments, we compare the
performance of the proposed allocation rule with the optimal allo-
cation rule and two benchmark allocation rules.

To summarize, the paper makes the following contributions:

e We develop a dynamic allocation rule that is applicable to prob-
lem instances of real-life size. This allocation rule is a one-step
lookahead policy that takes into account base stock levels,
actual stock levels, and demand forecast information. We show
that the optimality gap of the proposed allocation rule is usually
small (i.e. average gap is less than 2%).

e We characterize our dynamic allocation rule by comparing its
allocation decisions to the allocation decisions of a simple static
allocation rule. We show that the dynamic allocation rule
achieves considerable cost savings by deviating from the simple

static allocation rule in a relatively small number of situations.
In particular, we show that the dynamic allocation rule is more
reluctant to take away the last item at a local warehouse and
less reluctant to use emergency deliveries from the central
warehouse.

e We show that dynamic allocation leads to significant cost sav-
ings compared to a simple but widely used static allocation rule
by numerical experiments on a test bed that is inspired by IBM’s
spare parts network in Europe. We illustrate the impact of key
problem characteristics on the potential benefits.

The paper is structured as follows. We start with a literature re-
view and position our research in Section 2. In Section 3, we de-
scribe our model and discuss important assumptions. In
Section 4, we introduce our new dynamic allocation rule. Section 5
presents a numerical study that compares the proposed dynamic
allocation rule with the optimal allocation rule, and two bench-
mark allocation rules. Finally, in Section 6, we summarize our re-
sults and draw conclusions.

2. Literature review

Our work contributes to a rich literature on spare parts inven-
tory models. The literature that is most related to the work in this
paper, comes from three streams.

In the first stream of literature, inventory models with fixed lateral
transshipment rules are studied. In this stream, demand occurring at
a local warehouse with no stock at hand can be fulfilled via a stock
transfer from another local warehouse. In literature, models are
developed for evaluating system performance, either exactly or
approximately. An important contribution in this stream is made
by Axsdter (1990) who studied a two echelon model with one central
warehouse and a number of local warehouses. In his model demand
is fulfilled from the local warehouse whenever possible. If no items
are available, anitemis sent from a randomly chosen local warehouse
with stock at hand. Demand rates observed by each warehouse are
approximated by assuming that all demand streams are Poisson.
Based on the resulting set of equations, he provides an iterative algo-
rithm to obtain steady state probabilities. In the spirit of Axsédter
(1990), Kukreja et al. (2001), Wong et al. (2005), Kutanoglu (2008),
Kranenburg and Van Houtum (2009), and Reijnen et al. (2009) devel-
op different models for evaluating and optimizing system perfor-
mance under given allocation rules. All of these models assume
static allocation rules whereas we focus on dynamic allocation rules.

The second stream of literature also studies inventory models
with lateral transshipments, but the lateral transshipment rule is
now subject to optimization. An important paper in this stream
is Axsdter (2003). The author considers a backordering model
where a particular local warehouse with no stock at hand receives
a customer demand. The task is to select a warehouse to fulfill the
demand. The impact of all possible sourcing decisions on the total
cost is approximated by considering the direct cost and the addi-
tional future cost associated with a temporary reduction of the
stock level at the source location. Future cost is calculated under
the assumption that no lateral transshipments will take place. Min-
ner et al. (2003) consider a similar model in a retail environment
with lost sales. Another interesting contribution in this stream is
made by Wijk et al. (2009) who provide an exact analysis for a
two location setting with given base stock policies and exponential
lead times. What differentiates our work from this stream, is that
we consider inventory networks where part requests can be ful-
filled directly (i.e. without lateral transshipment) from multiple lo-
cal warehouses in the network, and that we support multiple
customer classes. For a recent and comprehensive literature review
on lateral transshipments we refer to Paterson et al. (2011).
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The third stream of research that is relevant for our work stud-
ies inventory rationing and revenue management. Inventory
rationing techniques support the allocation of inventory units
among a heterogeneous customer base, by setting critical inven-
tory levels and/or setting inventory control mechanisms. The con-
cept of critical levels was introduced by Veinott (1965) and Topkis
(1968) and since then, solutions have been provided for various
control policies and demand classes. For a comprehensive litera-
ture review on inventory rationing we refer to Teunter and Klein
Haneveld (2008). Although the concept of critical levels supports
customer heterogeneity, it cannot easily be applied to our problem
because of two reasons. First, critical level literature usually as-
sumes a single source location. Sourcing flexibility-a key charac-
teristic of our problem-is not accounted for. Second, the concept
of critical levels offers only limited opportunities for customer dif-
ferentiation in spare parts settings like ours where stock levels are
low and the number of customer classes is usually more than two.

To overcome these difficulties, Jalil (2011) follows the concepts
of revenue management to formulate a problem similar to ours as
a multi-period MDP. The relative value function is approximated
using linear programming. In the linear program, remaining stock
at the end of the horizon has no value, future replenishments are
ignored, and demand is assumed to be deterministic. In numerical
experiments, he shows that in situations where customer hetero-
geneities are high and actual stock levels are low the revenue man-
agement heuristic achieves significant lower total cost over the
next 25 time periods than the static allocation rule. What differen-
tiates our work from Jalil (2011) is that we approximate the rela-
tive value function using an infinite time horizon taking into
account future replenishments and honoring the stochastic nature
of demand.

3. Problem description and model formulation

In this section we define the inventory control problem, discuss
assumptions, introduce our notation, and formulate our model.

3.1. Problem description and notation

We consider a single item, single echelon, spare parts inventory
network consisting of multiple local warehouses where spare parts
are kept on stock for customers with different service contracts.
Whenever a part at a customer site fails, it has to be replaced by a
spare part. Part requests can be fulfilled from every warehouse in
the network with stock at hand. The central warehouse keeps spare
parts to replenish the local warehouses, and has also access to an
emergency delivery mode to fulfill customer demand. The delivery
time and the delivery cost from a warehouse to a customer are fixed
and depend on the geographical coordinates and the delivery mode
(emergency or regular). Typically, emergency deliveries are signifi-
cantly more expensive than regular deliveries. Customers have ser-
vice contracts with committed response and repair targets backed
by penalties in case of contract violations. Penalty cost grows line-
arly in the delivery time beyond the service deadline, and depend
on the contract type. Typically, the hourly penalty cost rate for
2 hours service contracts is (much) higher than for 8 hours con-
tracts. Our objective is to minimize the sum of the average annual
delivery cost and the average annual penalty cost.

3.2. Discussion of main assumptions
(i) The central warehouse has ample stock. The reason for this

assumption is that replenishment decisions at the central
warehouses are often decoupled from replenishment and

allocation decisions at lower network echelons. In real life,
we often see that the central warehouse can obtain new
items from multiple channels such as regular suppliers,
emergency suppliers, repair, and assembly/production
facilities.

(ii) Part requests from each customer follow an independent
Poisson process. The Poisson assumption is common in spare
parts logistics.

(iii) Replenishment lead times are exponentially and identically
distributed and have the same mean for all local ware-
houses. The assumption of equal replenishment lead times
is justified because in real-life replenishment lead times
are simply fixed at the same values for all local warehouses
in the same geographical region. The assumption of an expo-
nential shape of the replenishment lead time distribution is
made to facilitate an exact MDP analysis for problem
instances of sufficiently small size. Alfredsson and Verrijdt
(1999) showed that the performance of a model with a static
allocation rule in a complete pooling situations is rather
insensitive to the choice of exponential or constant replen-
ishment lead times. It is reasonable to assume that this also
holds for our model. However, it is also clear that in situa-
tions with constant replenishment lead times, information
on remaining replenishment lead times can be useful to cal-
culate smart allocation decisions. We leave this for further
research.

(iv) Inventories at local warehouses are controlled through con-
tinuous-time base stock policies with given base stock lev-
els. In real life, stock levels are often reviewed only once a
day. Since the replenishment lead time for a local warehouse
is typically 3-6 days, we can however accurately approxi-
mate the periodic replenishment with a continuous replen-
ishment with an adjusted average replenishment lead
time. The assumption of base stock control at the local ware-
houses is justified because we consider inventory networks
of expensive technical parts where holding cost is usually
high and demand is usually low.

(v) Service deadlines, penalty cost, and delivery times are such
that is never beneficial to backorder demand. Demand is
thus always fulfilled immediately, either from a local ware-
house or from the central warehouse (by means of an emer-
gency delivery).

(vi) Customers in the same geographical area are aggregated into
one customer region. Delivery times and delivery costs for
all customers in the same customer region are the same.
Demand rates for spare parts are available for each pair of
customer region and contract type. This assumption makes
sense because the expected life time of a spare part is large,
and accurate information on the number and the condition
of installed parts is usually not available. Hence, demand
rate estimates are much more reliable on customer region
level than on individual customer level.

The notation of our model is given in Table 1.

Because we assume one-for-one replenishment at all local
warehouses, each spare part demand leads to one spare part leav-
ing the central warehouse (either directly as an emergency deliv-
ery to the customer or as a replenishment shipment to the local
warehouse that fulfills the customer demand). Consequently,
replenishment cost at the central warehouse can be ignored be-
cause it does not depend on the allocation decision. Together with
assumption (v) this implies that we can pre-calculate the total cost
for fulfilling a part request from customer region j and customer
class k from stocking location i according to:



370 H.G.H. Tiemessen et al./European Journal of Operational Research 228 (2013) 367-380

Table 1
Notation.
Indices
i=0,...,1I Stocking locations; i = 0 refers to the central warehouse
j=1,...J Customer regions
k=1,...,K Customer classes (defined over contract types)
Parameters
Si Base stock level of stocking locationi=1,...,I
ﬁ Average replenishment lead time of a local warehouse
Ak Demand rate of customer region j and customer class k
Wi Maximum response time for customer class k
tj Delivery time from stocking location i to customer region j
Cg, Delivery cost to ship one item from stocking location i to customer region j
Ci Hourly penalty cost for contract violations of customer class k
(e Unit replenishment cost for stocking location i > 0
o Total cost to fulfill a demand from customer region j and customer class k from stocking location i

ijk

p { Ci+Ch - (6 — Wi™)” if i = 0 (central warehouse)

L Cj+Ch (t — Wi™)" + ¢ if i > 0 (all local warehouses)

3.3. MDP formulation

In this section we formulate the real-time allocation problem as
a continuous-time average cost MDP with finite state and control
spaces (see e.g. Bertsekas, 2007, pp. 310-316). State transitions
and action selections take place at time instances when one of
the following two event types occurs: (i) a replenishment order ar-
rives at a local warehouse, or (ii) a customer issues a new part re-
quest. Times between successive transitions have an exponential
probability distribution.

We describe the state of the system by x = (z,j,k), with z = (z;,-
...,z;) the I-dimensional vector of actual stock levels at the local
warehouses, and (j, k) references to the customer region and the
customer class associated with the arriving part request. If the state
refers to a replenishment order arrival, we set jand kequal to 0. We
define the state space S as S={((z1,...,2),j,k)|zi € {0,...,Si},
i=1,...,Lj=1,....J,k=1,... K} U{((z1,---,21),0,0)|z; €
{0,...,S},i=1,....1}.

We now define the action space 4, and the set of admissible ac-
tions A(x) for each state x € S. The action space for our model is
A=1{-1,0,...,I}. Here, actioni > 0 stands for the decision to send
a spare part from warehouse i to the customer who has just issued
a part request, and action —1 stands for the decision to do nothing.
Obviously, we have that A(z,0,0) = {—1} for all z. The set of
admissible actions for a state that represents a demand arrival,
consists of all local warehouses with stock at hand plus the central
warehouse: A(z,j, k) = {ilzi > 0,i=1,...,I} u {0} forall (z,j,k) € S
with j,k > 0.

Next, we describe the transitions for our continuous-time MDP
formulation. We assume that if the system is in state x and action a
is applied, the next state will be y with probability pxy(a). The
probabilities pxy(a) are called transition probabilities (see Bertse-
kas, 2007, p. 306). Furthermore, we define e; for i>0 as the I-
dimensional unit vector with a 1 at position i and ey as the zero
vector, i.e. eg=0.

Transition type 1: initial state: X = (z,0,0), action: —1, next event:
part request from customer region n and customer class p, next
state: y =(z,n,p). The transition rate is A, and the transition

probability pxy(—1) is equal to [24:125:1%#

I
US4 (S —22)].
Transition type 2: initial state: X = (z,0,0), action: —1, next event:
order arrival at local warehouse m, next state: y =(z + e,,,0,0).

The transition rate is u(S, — z,) and the transition probability

Pry(—1) s equal t0 (S — zm) / [ S0y oI dau + M) (S = )]
Transition type 3-a: initial state: x=(zj,k) with
4., k)ye{1,....]} x{1,...,K}, action: 0, next event: part request
from customer region n and customer class p, next state:
y =(z,n,p). The transition rate is 1,, and the transition probabil-

ity pxy(0) is equal to [Z{:]Zfﬂ A A Wb (S — Z,)].

Transition type 3-b: initial state: x=(z,j,k) with
U.k)e{1,....)} x {1,...,K}, action: i with i € {1,...,I} and z;> 0,
next event: part request from customer region n and customer
class p, next state: y = (z — e;,n,p). The transition rate is 4,, and

the transition probability  pxy(i) is equal to
inp/ [thzl 25:1 A+ P+ /‘erzl (S — rm)] .
Transition type 4-a: initial state: x=(zj,k) with

4.,k)ye{1,....]} x{1,...,K}, action: 0, next event: order arrival
at local warehouse m, next state: y = (z + e;;,0,0). The transition
rate is p(Sm —zm) and the transition probability pxy(0) is

U(Sm — Zm)/ [Z’t:lﬂf:lﬂ-m + U4 (S — Zr)] .

Transition type 4-b: initial state: x=(z,j,k) with
U.k)e{1,....J} x{1,...,K}, action: i with i € {1,...,I} and z;> 0,
next event: order arrival at local warehouse m, next state:
y=(z —e;+e,0,0). If m>i, the transition rate is w(Sy, — zn)
and the transition probability Pxy(i) is

WS = 2m)/ [ e+ o+ 0 (S, = 20)|- I m=i, the
transition rate is u(S; + 1 — z;) and the transition probability is

RS+ 1= 20) [ S+ ot B (S~ 20

The mean transition period lengths 7(x,a) for all state/action
pairs directly follow from the transition rates. For state (z,0,0)
and action -1 the transition period length 7((z,0,0),-1) is

1/ [ S+ W1 (S, — 27)|. - For (zj.k)  with
G,k)e{1,....J} x{1,...,K} and action O the transition period length
t((z,j,k),0) is equal to 7((z,0,0),—1). Finally, for state (z,j,k) with
G,k)e{1,....J} x {1,...,K} and action i with i € {1,...,I} the transi-

tion period length t((zjk)i) is 1 / [thzlzlu(:]ier Ut

1S~ (S, — z,)]. We conclude our MDP formulation with the spec-
ification of the expected direct cost G((z,j,k),a) when choosing ac-
tion a in state (z,j,k):

f .
Cy faz0 )
0 otherwise

state

G((Z,j, k)va) = {

To obtain the optimal allocation rule we transform the continu-
ous-time MDP into a discrete-time MDP by applying a technique
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called uniformization (see e.g. Bertsekas, 2007, pp. 288-295). The
uniformization procedure consists of two steps: In the first step,
we determine a new transition period length 7 such that t < 7(x,a)
for all xS , aeA . It is easy to see that

=1 / {
second step, we add two types of transitions: (i) from state
(z,0,0) and action —1 to (z,0,0), and (ii) from state (z,j,k) and ac-
tion i € A(z,j, k) to (z — e;,0,0). The transition rates for these ficti-
tious transitions are chosen such that t(x,a)=1 for all x € S, and
a € A(x) . We obtain the desired discrete-time MDP by replacing
the exponentially distributed transition period lengths with con-
stant transition period lengths with the same mean.

The optimal average cost /* can be obtained by solving the Bell-
man optimality equations for the (discrete-time) average cost
MDP:

D DV IyT) S ] is an appropriate choice. In the

h*(x) = min |G(x,a) — /*T+ Y pey(@h*(y)| Vxe S 2)

acA(x) yes

With the condition ¢'h* = 0 (for any ¢ > 0), Eq. (2) has a unique fi-
nite solution and the optimal action a*(x) is the action that attains
the minimum in (2). h* is known as the optimal relative (or differ-
ential) cost vector and h*(x) — h*(y) represents the expected cost
difference over an infinite time horizon under the optimal policy
when starting in state x instead of y. We solve (2) using relative va-
lue iteration (see e.g. Bertsekas, 2007, pp. 204-229). If we set ¢’
equal to the state probabilities, the value of h*(x) can be interpreted
as the total additional cost over an infinite time horizon when start-
ing in state X compared to paying the average cost /* every time
unit. This interpretation of h*(x) plays an important role in the
development of our dynamic allocation rule in the next section.

4. Heuristic allocation rules

In this section, we present three heuristic allocation rules for
the spare parts inventory network discussed in the previous sec-
tion. The first heuristic allocation rule is a simple static allocation
rule (denoted as SA-rule) which is described in Section 4.1. Because
this rule is widely used in real life, it constitutes an important
benchmark for any newly developed allocation rule. Next, we
move to dynamic allocation rules. In this paper, we restrict our-
selves to one-step lookahead (1SL) policies. One-step lookahead pol-
icies choose at each state x the action a'S/(x) that minimizes the
sum of the direct cost and an approximation of the optimal future
cost:

a'st(x) = arg mm [ (X,a) + Y pyy(a)h } vxes (3)

ac Al X yeS
If h is the relative cost vector of some heuristic allocation rule
(called the base policy), then the one-step lookahead policy is called
a rollout policy. For rollout policies, we can use the Bellman equa-
tions for the base policy (see Bertsekas, 2007, p. 198) to simplify
(3) to:

a)k+2p zjk)y ]

at(z,j k) =arg mm
acA(z yes
:argag}\lg}k a}k+yezsp z2-eq,0,0).y )h(y)}

*
_arguerfr‘l(y}k[ aj,<+h(z €,,0,0)+2 }

=arg min
acA(zj k)

[ s+ h(z—eq,0, 0)] Y(zj,k)eSandj>0
(4)

The second heuristic allocation rule we present in this section is a
rollout allocation policy with the SA-rule as base policy. This policy
is denoted as the RA-rule and is described in Section 4.2. To derive
the RA-rule, we must solve a system of (/ + 1)[].,(S: + 1) Bellman
equations in order to obtain hS4, the relative cost vector under
the SA-rule. For problem instances of real-life size this is infeasible.
To overcome this problem, we develop a one-step lookahead alloca-
tion rule where we approximate the optimal relative cost with an
estimate of the relative cost under the SA-rule. This third allocation
rule is a dynamic allocation rule. It is denoted as the DA-rule and
described in Section 4.3.

4.1. SA-rule

The SA-rule is a static allocation rule that uses predefined
priorities to determine, among all warehouses with stock at hand,
the warehouse that is selected to fulfill a part request. It takes as
input J x K sorted lists of warehouses, one for each pair of cus-
tomer region and customer class. Let Ly(q) denote the g-th ware-
house in the static priority list of customer region j and customer
class k. In case of a part failure at a customer of class k in cus-
tomer region j, a new spare part is sent from the first warehouse
in Ly with stock at hand. The warehouses in Lj are sorted in
ascending order on the basis of the fulfillment cost C{jk. This
means that the SA-rule is a greedy allocation rule that selects
among all warehouses with stock at hand the one with the low-
est immediate fulfillment cost.

4.2. RA-rule

The RA-rule is a rollout policy that uses the SA-rule as base pol-
icy. An interesting property of rollout policies is that they have the
cost improvement property which states that they achieve no
worse results than their base policies. A major disadvantage is that
the RA-rule requires calculating hS?, and this involves solving a
(possibly huge) set of Bellman equations. The practical value of
the RA-rule is therefore limited. Yet, we have added the RA-rule
to our analysis because it is the inspiration for our DA-rule.

4.3. DA-rule

In this subsection we present the DA-rule. The DA-rule is a one-
step lookahead policy. In contrast to the optimal allocation rule
and the RA-rule, it is applicable to problems of arbitrary size. First,
we explain the general idea behind the DA-rule. Then, we discuss
the three components that together make up the algorithm for
approximating the optimal relative cost. We conclude with a for-
mal description of the rule.

4.3.1. Idea behind the DA-rule

The DA-rule is a one-step lookahead policy where we approxi-
mate the optimal relative cost with an estimate of the relative cost
under the SA-rule. The estimate is obtained through a computa-
tionally inexpensive iterative procedure. Consequently, the DA-
rule can be considered as an approximation of the RA-rule (but
one that can handle problems of arbitrary size).

Consider the system when a demand arrives. Without loss of
generality, we assume that time is 0 and the actual stock level vec-
tor is equal to z. We want to approximate h?* for all states
(z — e4,0,0) with z, > 0. Let us define J(z — e, tq,t3) as the expected
total cost during time interval [ty,t;] if the system is in state
(z — e4,0,0) at time 0 and the SA-rule is used to fulfill future de-
mands. Then, by definition:

h(z—e,,0,0) = lim{/(z - e,,0,1) - 2] (5)
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Our approximation of h%* is based on a similar idea as in Axsiter
(1990). We make a decomposition of the network into individual
local warehouses. In this way, we only deal with one Markov pro-
cess per local warehouse instead of one Markov process for the en-
tire network. Under the SA-rule, all demand from customer region j
and customer class k is first offered to warehouse L;(1). If demand
arrives when Ly(1) has no stock at hand, it is offered to Ly(2). If
L;y(2) is also out of stock, it is offered to Lj(3), et cetera. We assume
that the overflow demand stream from customer region j and cus-
tomer class k to warehouse i # Ly(1) is a Poisson process. Conse-
quently, each warehouse can be evaluated individually as an
Erlang loss model (M|M|S;S; queue). In earlier contributions,
Axsdter (1990), Alfredsson and Verrijdt (1999), Kukreja et al.
(2001), Kutanoglu (2008), Kranenburg and Van Houtum (2009),
and Reijnen et al. (2009) have derived approximations for the
average network flow rates in steady state. However, since we
want to calculate the relative cost, we are interested in transient
system behavior. To the best of our knowledge this has not been
looked at before.

We approximate the transient system behavior in the following
way: We assume for each warehouse i a (constant) stockout prob-
ability p; during [0,T] and the steady state stockout probability p;
when t>T.

The parameter T > 0 is a design parameter for the DA-rule. In
Section 4.3.2 we argue that setting T equal to the average replen-
ishment lead time % is a good choice for all problem instances. In
the same subsection we also develop a procedure for calculating
pi- At this point, we just mention that the value of p; depends
(among other things) on the initial stock level vector (z — e;) and
the value of T. In Section 5.2 Table 5 we verify our choice of T in
a large numerical experiment. Next, we assume stationary demand
streams during [0,T] that follow from the stockout probabilities p;,
and stationary demand streams when t > T that follow from the
stockout probabilities p;. From the estimated stationary demand
rates and the estimated stationary stockout probabilities we can
immediately estimate the stationary flow rates in the network
for [0,T] and t > T. We can use these estimated stationary flow rates
to derive approximations for J(z — e,,0,T) and J(z — e, T, t) for arbi-
trary t > T. For the purpose of our analysis, we now rewrite (5) as:

W z-e,0,0)=]Jz—e,0,T) + lim[J(z — e, T, t) - 2] (6)

Let J() denote our approximation of J(), and let h%(z — e,) de-
note our approximation of h*4(z — e,). Starting from Eq. (6) and
using the assumption that the system is in steady state for t>T,
we obtain hi%(z — e,,0,0) = J(z — e,,0, T) — /**T. Because the rela-
tive cost vector h3 is unique up to a constant (cf. the Bellman
equations for a stationary policy; see Bertsekas (2007), p. 198),
we may add /T to all elements in h%* and simply define
hA(z — e,,0,0) = J(z — e4,0,T). Plugging this into (4), we obtain
the following expression for the DA-rule:

DA(my + 1\ _ ; L Tz _
a’(z,j, k) = argaerjl(;?k) {Cajk +J(z—eq,0, T)]

Y(z,j, k) € Sandj >0 (7)

The algorithm for calculating j(z —e4,0,T) consists of three main
steps. The first two steps are executed alternately and provide an
accurate estimate of the average network flow during [0,T] when
starting at the actual stock level vector (z — e,) at time 0. Before
we describe these two steps in detail, we introduce some notation:
Let Dy denote (an approximation of) the average demand rate of
customer class k in customer region j to warehouse i during [0,T]
and let p; denote (an approximation of) the average stockout prob-
ability at warehouse i during [0, T].

Step 1: Calculate the stockout probabilities p; given the demand
rates Dy, and the initial stock level vector (z — e,).

Step 2: Update the demand rates Dy given the average stockout
probabilities p;.

The two steps are executed until the changes in Dy in two con-
secutive iterations are smaller than some pre-specified, small
value €. The iterative process is initialized with Dy = 4j if
i=Ly(1) and Dy =0 otherwise. In the third step, we calculate
our approximation of the relative cost under the SA-rule for
state (z — e,,0,0).

Step 3: Calculatef(z —e,,0,T), given the converged values of Dy
and p;.

We now explain these three steps in more detail.

4.3.2. Step 1: Calculating p; for given demand rates Dy

Because we assume that the overflow demand streams are Pois-
son, we can model each warehouse i as an Erlang loss model with S;
servers, demand arrival rate D; = 37,3~ Dy and service rate y. Sup-
pose that the initial number of free servers (in our setting this is
equivalent to the actual stock level) is equal to z;. We are interested
in approximating the average stockout probability during time
interval [0,T]. The steady state stockout probability in an Erlang
loss model can be calculated from the well-known Erlang B
formula:

B<si.&> - 1)

()

Let N(S;,D;, 1,z;,t) denote the expected number of rejected re-
quests in the M|M|S;|S; queue during time interval [0,t] starting
with z; items in stock at time 0. Furthermore, let A(S;, Dy, i, z;) rep-
resent the additional number of rejected requests over an infinite
time horizon starting with z; items in stock at time 0, compared
to steady state. The formal definition is given below:

(8)

A(S: Dy pz) = lim {N(s,-, Dy, 1.21.t) — DitB (sDﬁ)} 9)

Our idea is to approximate the transient stockout probability with a
step-function. For t < T we use a constant stockout probability p;,
and for t>T we use the steady state stockout probability
pi=B S,,% . To calculate p; we assume that the additional number
of rejected Tequests compared to steady state all occur in the time
interval [0,T]. Under this assumption the expected number of re-
jected requests during [0,T] is equal to D,TB S,-,%) + A(Si, D, 1, zi).
Consequently, we can approximate the average stockouts probabil-
ity during [0 T] as follows:

Di = F(SiaDi', :l’l?Zi’T)

=max{0,min{1,B(Si,%> +W}} (10)

The min and max in expression (10) have been added to make
sure that the calculated stockout probabilities are never smaller
than zero or bigger than one. Before we can apply (10), we must
calculate A(S;, Dy, i1, z;).

To obtain A(S;,D;, t,z;), the following steps are carried out: (i) we
formulate the M|M|S;|S; queue that represents warehouse i as an
average cost MDP with a cost of 1 in case of a rejected customer
demand, (ii) we construct a set of equations for the relative cost
vector h = (ho, hy, ..., hs,) consisting of (S;+ 1) Bellman equations
and one scaling equation, and (iii) we solve this system of equa-
tions. The scaling constraint is chosen such that
A(S;, Dy, 1, z;) = h;,. We now explain these steps in more detail.

To formulate the M|M|S;|S; queue as an average cost MDP we
choose as state the number of items on stock. We have two events:
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(i) arrival of a customer demand, and (ii) arrival of a replenishment
order, and we also have two actions: (i) fulfill demand, and (ii) re-
ject demand. For every state we have exactly one admissible action
(defined by the nature of the M|M|S;|S; queue): Demand is fulfilled
if there is stock at hand, and rejected if there is no stock at hand.
We incur unit cost for each rejected demand. The Bellman equa-
tions for this system read as:

D; DB (Si’ %) D;

_ Sitt

h07D1+Siﬂ_ D,‘+S,‘,Ll D,-+Si,uh0+Di+S,-,uh1
DB(S;,% _

hy = — (5:5) P
Di+ (Si—nu  Di+ (Si—n)u
_Si-mu o
/1+(S,-—n),uh”“ 1<n<S -1 (11)
D;B(S;,

hs, = — <DA ”)+hsi,1

Next, we add a scaling equation to (11) such that the resulting
system of equations has a unique solution with A(S;,D;, i1, z;) = hy,.
This constraint states that weighted sum of all vector elements of h
must be equal to zero where the weights are equal to the state
probabilities. It reads as:

n
S; 1 (D
S|
X
Si 1 (D
w8 | ot (2)

We obtain h; (and thus A(S;,D;, i,z;)) by solving the system of
equations consisting of (11) and (12). The simple structure of the
system of equations allows for a fast sequential solution procedure.
We have illustrated our step-function approximation of the real
transient stockout probability for an arbitrary local warehouse in
Example 1.

hy =0 (12)

Example 1. Consider a local warehouse i with base stock level
S;=3 and suppose that the average replenishment lead time ﬁ is
equal to 1 Furthermore, suppose that at a certain point in the
iterative procedure for calculating j(z —e4,0,T) , the demand
arrival rate D; = 37,3, Dy, for warehouse i is equal to 12. Ware-
house i can now be modeled as an M|M|3|3 queue with an average
service time of 1, and a demand arrival rate of 12. To investigate
how the stockout probability at warehouse i evolves over time, we
have written a Matlab simulation script. Fig. 1a shows the real
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(a) Real transient behavior
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stockout probability as a function of time for O items in stock at
time O and Fig. 1b shows our approximation of the real stockout
probability with T = % Note that the shaded areas in Fig. 1a and b
are equal.

Now, we motivate our choice to set T equal to % Recall that T is
used in the step-function approximation of the transient stockout
probabilities, i.e. for each warehouse i, we assume a constant
stockout probability p; during [0,T] and the steady state stockout
probability p; when t > T. In this subsection, we have developed a
method for calculating p; that uses the initial stock level vector
(z — e,). It seems reasonable to choose T such that the impact of
each candidate allocation decision a on the transient stockout
probabilities is relatively strong during [0,T] and relatively weak
when t > T. Obviously, allocation decisions have most impact dur-
ing the time period that they cause a (temporary) reduction of
the stock level at the sourcing warehouse. Since we assume fixed
base stock policies, replenishment orders are triggered immedi-
ately when a part leaves the warehouse. Consequently, it makes
sense to set T equal to the average replenishment lead time %

4.3.3. Step 2: Updating Dy, for given average stockout probabilities p;

By definition of the SA-rule, all demand from customer region j
and customer class k is offered to Ly(1). Suppose that warehouse
i=Ly(1) is out of stock a fraction p; of the time. Then, a fraction
(1 — p;) of the demand from customer region j and customer class
k is fulfilled from warehouse i, and an overflow demand stream
pixZjx is offered to warehouse Ly(2). In general, the overflow
demand rates Dy can be recursively determined from Dy, g jx =

pij(Cl—l)Dij(qfl)‘j.k- Hence,
il ifg=1
(13)

Dij(Q)\ivk =93 o~ .
/ijHpij(q) if g>1
n=1

Note that in this recursive formula we use the simplifying assump-
tion that actual stock levels at the local warehouses are
independent.

4.3.4. Step 3: Calculating j(z —e,,0,T) for given Dy and p;

We can estimate the average flow rate of spare parts for cus-
tomer class k during [0,T] between warehouse i and customer re-
gion j by multiplying the (estimated) average demand rate
during [0,T] with the (estimated) average fill rate of warehouse i
during [0, T]. We obtain an estimate of the average total cost during
[0,T] by taking the sum over all network edges of the product of the
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(b) Step-function approximation

Fig. 1. Real and approximated transient stockout probability for M|M|3|3 queue and initial stock equal to 0.
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Table 2

Parameter choices for the test beds.
Name of parameter Values Experiment I Values Experiment II
No. of local warehouses (I) {6} {24}
No. of customer regions (J) {24} {96}
Delivery time profile (i > 0) t;=0.5+0.01d; As Experiment [
Delivery cost profile (i > 0) Cﬁ- = 1dy As Experiment [
Emergency delivery cost (C3;) {2000} As Experiment |
Replenishment cost (Cj) {0} As Experiment I
Region indicator (R) {r,r2} As Experiment [

ril=72t=4

ry: k=120t =8

Length service area unit (I) {\/i 150, 1504%\/@, 150} As Experiment [
Customer class fractions (w) {%.23).3.2.9. 320} As Experiment I
Relative network demand (¢) {0.2,0.5,1.0} As Experiment [
Penalty cost vector (CP) {(1200,600,300),(2400,1200,600),(4800,2400,1200)} As Experiment [
Target time-based fill rate (I") X={(0.5,0.5,0.5),(0.8,0.8,0.8),(0.95,0.95,0.95)} X U{(0.98,0.98,0.98)}
estimated flow rate (i.e. (1 — p;)Dyx), the fulfillment cost (i.e. C{;.k), objective is to characterize the DA-rule by investigating how it
and the length of the time horizon (i.e. T). differs from the SA-rule. Finally, we investigate the potential cost
savings of the DA-rule over the SA-rule on problem instances of
4.3.5. Formal specification real-life size, and we explore how the relative performance
We conclude this subsection with a formal description of the depends on various problem characteristics.
DA-rule. It consists of the control rule (7) and the Algorithm 1 for To meet the first four objectives we define a numerical experi-

calculating j(z — e4,0,T). To evaluate the performance on problem ment with a test bed containing a wide range of problem instances
instances of real-life size, we have implemented the DA-rule in a of small size (Experiment I). For all problem instances in this test
JAVA simulation program. Each time the simulator generates a bed, we can calculate the computationally expensive optimal allo-
new part request, we execute Algorithm 1 for all warehouses with cation rule and the computationally expensive RA-rule. In this

stock at hand. No allocation decisions or relative cost vectors are experiment we use relative value iteration to evaluate the perfor-
stored. Consequently, storage space requirements are minimal. mance of the allocation rules. To meet the fifth objective we define
The average computation time per part request is less than 10 mil- a numerical experiment with a test bed containing a wide range of

liseconds on an Intel Pentium 4 2.16 gigahertz processor for all problem instances of real-life size (Experiment II) and use discrete
problem instances in our numerical experiments (including the event simulation to evaluate the performance of the SA-rule and

ones of real-life size). the DA-rule. In Section 5.1 we define the test beds, in Section 5.2
we describe the experiment with problem instances of small size,
Algorithm 1. Calculate f(y, 0,7) in Section 5.3 we characterize the DA-rule, and in Section 5.4 we
describe the experiment with problem instances of real-life size.
initialization
V(i k) €{0,....1} x {1,...J} x {1,....K Dix=0
VE,-,’k))e{1{,4..,1}1{1{,...,1@” (i DZJMW,{ = X 5.1. Test bed
vie{l,....I} D; :25:12115:1[31'11( F . . .

0 or Experiment .l and Fxperlmgnt Il we use smnlar test beds
vie(l,. .1} §?= KS.DuizT)  cf.(10)~(12) based on full fact.orl.al designs on six parameFers: Six more param-
repeat eters are fixed within each test bed. The main difference between

V(g k) € {2, 1y x {1,... ) x {1,..,K} Dy, (q)jik = Pryg-1) both experiments is that for Experiment I we create problem in-
xDyq-1)jk stances of small size (six local warehouses), whereas for Experi-
vie{l,....I} D; :Z}ﬂZ'k(quﬂ( ment Il we create problem instances of real-life size (24 local
vie{l,....I} pi=FS;,Di 1,2, T)  cf. (10)-(12) warehouses). In both experiments, we consider three customer
until Dy, does not change more than € between two consecutive classes: customers with 2 hours contracts, customers with 4 hours
iterations contracts, and customers with 8 hours contracts. We start by sum-
finalization .. . .
b e K o marizing our choices for all 12 parameters in Table 2. Costs are ex-
JO:0.1) = T3i02 51 21 G (1 = P)Die pressed in euros, times are expressed in hours, and distances are
expressed in kilometers.
The total number of all possible combinations for these param-
eters iS 2x3x3x3x3x3=486 for Experiment I, and
5. Numerical experiments 2 x 3 x 3 x 3 x 3 x4=648 instances for Experiment IIl. We have
randomly created 5 different sets of values for the coordinates of
In this section, we investigate the performance and the struc- the customer regions, as there are uniform distributions involved
ture of the proposed DA-rule via numerical experiments. We have in the generation of these values. This gives us in total
the following objectives in conducting numerical experiments. 486 x 5 =2430 instances for Experiment I and 648 x 5 = 3240 in-
First, we investigate the optimality gap of the DA-rule. Second, stances for Experiment II.
we investigate the impact of the two main approximation steps We now explain some of the parameters in more detail and de-
in the DA-rule: (i) using one-step lookahead with the SA-rule as scribe how to construct problem instances from the parameters
base policy, and (ii) approximating the true relative cost under values. The first parameter in the factorial design is the region indi-
the SA-rule with j(z — e;,0,T). Third, we verify that 1 is an appro- cator (R). It can take two values ry or r,. The value r; represents a

priate value for the design parameter T in the DA-rule. Our fourth situation where the service area is at relatively close distance to
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the central warehouse; we use a small average replenishment lead
time (72 hours) and a small emergency delivery time (4 hours).
The value r, represents a situation where the service area is at
relatively large distance from the central warehouse; we use a
larger average replenishment lead time (120 hours) and a larger
emergency delivery time (8 hours).

The second parameter in the factorial design is the length of a
service area unit (I), which determines the network layout. For
all problem instances, we create a rectangular service area consist-
ing of 3 x 2 (Experiment I) or 6 x 4 (Experiment II) squares of I x [
kilometers each. We position a local warehouse in the center of
each square. For both experiments, the largest value of [ is chosen
such that an arbitrary part request at an arbitrary point inside the
service area can in principle be fulfilled within the service deadline.
Since we assume t;=0.5+0.01d; we can travel 150 kilometers
within 2 hours (=minimum service deadline). Consequently, the
largest value for I in the factorial design is equal to 150v/2. For
all problem instances we create J = 4 - [ customer regions. Each cus-
tomer region has coordinates that determine the delivery times
and the delivery costs. Each customer region generates 2 hours,
4 hours, and 8 hours spare part demands. The location of each cus-
tomer region is drawn according to a uniform distribution.

The third parameter in the factorial design is the weight vector
w = (w1, W5, w3) of the customer classes. It specifies for each cus-
tomer region the fraction of demand associated with a service
deadline of 2 hours, 4 hours, and 8 hours, respectively. In our
experiments, we do not only assume that all customer regions have
identical customer class weights, but also that their total demand
rates are identical. A graphical illustration of a possible network
layout for a problem instance in Experiment I with I = 150v/2 is gi-
ven in Fig. 2.

The fourth parameter in the factorial design is the average net-
work demand during the replenishment lead time divided by the
number of local warehouses. We refer to this parameter as the
relative network demand (¢). From the factorial design parameters
¢ and w we obtain the problem inputs Zj according to:

Ajk = %Wﬂ

The fifth parameter in the factorial design is the hourly penalty
cost vector CP. For each customer class it specifies the penalty
cost incurred per hour that a part request is fulfilled beyond the
service deadline. Typically, the hourly penalty costs get bigger
when the contractual maximum response times get smaller (so
¢t > > ).

30042

15042 4

! 1502

30042 45042

o Customer region
© Local warehouse

Fig. 2. Example of network layout in Experiment I.

The sixth and last parameter in the factorial design is the K-
dimensional vector I which contains a target time-based fill rate
for each customer class. We have developed a simple heuristic to
calculate the base stock level vector S from the target fill rate vec-
tor I'. In this heuristic we make use of a method described in Reij-
nen et al. (2009) to approximate the average network flow rates
when base stock levels are given and demand is fulfilled according
to the SA-rule. We now summarize the heuristic (a formal descrip-
tion can be found in Appendix A).

In the first step, we set all base stock levels equal to zero. In the
second step, we execute an iterative procedure where we increase
the base stock level that minimizes the sum of the average annual
delivery cost and the average annual penalty cost. We stop the iter-
ative process when the time-based fill rates that follow from the
method to approximate the average network flow rates are bigger
than the target time-based fill rates specified in I'. So, by construc-
tion, the calculated base stock level vector S is close to optimal un-
der the SA-rule and |K] time-based fill rate constraints with bounds
Iy, k=1,...,K. In real-life, OEMs typically set high target fill rates
for SKU-s with low inventory holding costs, and (relatively) low
target fill rates for SKU-s with high inventory holding costs. Thus
via the target fill rates, we are able to create different problem in-
stances that represent a wide spectrum of part types (expensive
and inexpensive ones).

5.2. Experiment |

In this experiment we investigate the optimality gaps of the SA-
rule, the RA-rule, and the DA-rule on the test bed defined in the
previous subsection. For each of the 2430 problem instances, we
have calculated the average annual total cost, the average annual
regular delivery cost, the average annual emergency delivery cost,
and the average annual penalty cost for all allocation rules by solv-
ing the balance equations for the Markov chain induced by the
allocation rule. Consequently, all cost figures presented in this
experiment are exact. We have run the numerical experiment on
an Intel Pentium 4 2.16 gigahertz processor and 2.00 gigabyte
RAM. Computation times for all allocation rules range from less
than 0.1 second for problem instances with low base stock levels
to 5-10 minutes for problem instances with high base stock levels
(1<S; <5).

We start by providing insight into the spread of the optimality
gaps over the 2430 problem instances for the three heuristic allo-
cation rules. For this purpose, we calculate for each allocation rule
the 5%, 20%, 50%, 80%, and 95% percentile optimality gap, as well as
the minimum and the maximum optimality gap. The results are
shown in Table 3.

The table shows that the median optimality gap of the SA-rule is
4.4%. For 20% of all problem instances the optimality gap is more
than 15%, and the maximum optimality gap is even more than
85%. So, in a considerable part of all problem instances there is
big room for improvement. The numbers for the RA-rule look to-
tally different. We see that for most problem instances the opti-
mality gap of the RA-rule is less than one percent although the

Table 3
Experiment I: spread of optimality gap.

Percentile Optimality gap (%)
SA-rule RA-rule DA-rule

Min 0.0 0.0 0.0
5% 0.3 0.0 0.0
20% 1.0 0.0 0.2
50% 4.4 0.0 0.9
80% 15.6 0.5 2.8
95% 37.0 43 5.9
Max 85.7 18.2 12.1
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Table 4
Experiment I: optimality gap.
Test bed subset N Average optimality gap (%)
SA-rule RA-rule DA-rule

All instances 2430 6 (~0.7,-5.7,16.0) 7 (-0.0,2.3,~1.6) 1.6 (0.3,-1.6,3.0)
R=r 1215 8 (—1.0,-3.9,10.7) 5(0.1,1.4,—1.0) 1.2(02,-1.5,2.1)
R=r; 1215 133( 0.5,-7.5,21.3) 9(-0.1,3.2,-22) 2.1(04,-1.8,3.5)
I—vZ-150 810 0(-1.7,-3.6,13.3) 5(0.1,1.5,—~1.1) 1.0 (0.2,-1.3,2.1)
=150 810 5 (~0.6,—5.8,15.0) 8 (-0.0,2.5,—1.7) 18(03—1833)
1=1V6-150 810 112(00 ~7.6,18.8) 8 (-0.1,2.9,-2.0) 1(0.3,-1.8,3.6)
w:(%%%) 810 4 (-0.1,-5.1,12.6) ( 0.0,2.7,-1.6) 14(02,—1.2,2.4)
w=(2.232 810 108( 0.9,-6.3,18.0) 8(-0.2,2.7,—-1.9) 1.8 (0.3,-1.8,3.3)
w=(2.21 810 106( 1.2,-5.6,17.4) 5(0.2,1.5,—1.2) 1.8 (0.4,-1.9,3.3)
$=02 810 4(-0.7,-2.8, 6.9) 0(0.0,0.2,-0.2) 0.5 (0.2,-0.3,0.6)
$=05 810 1(-09,-5.8,15.8) 5 (—0.0,2.0,—1.5) 1.6 (0.1,-1.7,3.2)
$=10 810 161( 0.6,-8.5,25.3) 6(-0.1,4.7,-3.1) 2.8 (0.5,-2.9,5.1)
P =(1200,600,300) 810 8 (0.0,-2.6, 5.4) 1(0.0,0.4,-0.4) 0.9(02,-13,2.1)
P = (2400,1200,600) 810 7 (~0.6,-5.3,13.6) 4(-0.0,1.9,-1.4) 16(02—1731)
P = (4800,2400,1200) 810 182( 1.6,-9.2,29.0) 6 (—0.0,4.7,—3.1) 4(0.5,-1.8,3.7)
I' =(0.50,0.50,0.50) 810 5 (0.6,-10.7,24.6) 2(-04,4.2,-2.6) 4(03,-1.7,2.8)
I =(0.80,0.80,0.80) 810 7 (-1.4,-5.3,16.4) 7(0.1,2.4,-1.7) 22(03 ~2.5,4.4)
I' = (0.95,0.95,0.95) 810 5(-1.4,-1.1,7.0) 2(0.3,0.5,—0.5) 1.3(03,-0.7,1.7)

maximum optimality gap of the RA-rule is considerable (18.2%).
For the DA-rule, the 5%, 20%, 50%, 80%, and 95% optimality gap per-
centiles are a little bit higher than those of RA-rule, but still pretty
small. A remarkable observation is that the maximum optimality
gap of the DA-rule is smaller than the maximum optimality gap
of the RA-rule. So apparently, the DA-rule can outperform the
RA-rule for individual problem instances. Next, we calculate the
average optimality gap for all three heuristic allocation rules over
(i) all 2430 problem instances, and (ii) all subsets where one of
the factorial design parameters takes one of its admissible values.
Besides the average optimality gap (shown in bold face), we also
show the contribution of the regular delivery cost, the emergency
delivery cost, and the penalty cost to the optimality gap (these val-
ues are shown in parenthesis). The results are shown in Table 4.
The first row in Table 4 shows that the average optimality gap
over all problem instances of the SA-rule, RA-rule, and DA-rule is
9.6%, 0.7%, and 1.6% respectively. The average optimality gap of
the RA-rule is thus more than a factor 10 smaller than the average
optimality gap of the SA-rule. This does not only hold for the aver-
age optimality gap over all problem instances, but also for the aver-
age optimality gap in 16 out of 17 subsets. From all this, we
conclude that the RA-rule consistently performs very well on this
test bed. Unfortunately, the RA-rule cannot be applied to problem
instances of real-life size due to computational complexity (it re-
quires solving a set of Bellman equations that grows exponentially
in the number of local warehouses). That is why we have devel-
oped the DA-rule. The table also shows that the average optimality
gap of the DA-rule is about a factor 2 bigger than the average opti-
mality gap of the RA-rule. So apparently, approximating the true
optimal relative cost h*(z —e;0,0) with h*(z — e; 0,0), and

approximating h*4(z — e;,0,0) with | (z e, 0 ) both account for

about half of the observed optimality gap of the DA-rule. When
switching from the SA-rule to the DA-rule, we achieve an average
cost reduction of 100% x (109.6 — 101.6)/109.6 = 7.3%. From the
decomposition of the optimality gap into the three different cost
components, we see that this cost reduction is mainly obtained
by replacing regular deliveries by emergency deliveries (resulting
in higher emergency delivery cost but lower penalty cost). In the
next subsection, we investigate the differences between the SA-
rule and the RA-rule in more detail. Finally, Table 4 also provides
valuable information on the dependencies between the factorial
design parameters and the optimality gaps for three heuristic allo-
cation rules. The strongest dependencies are found for the relative

Table 5
Experiment I: impact of T on performance DA-rule.

T=

N\-A
N
~
Il
=

T=2.1 T=4.1

i u

Average optimality gap DA-rule (%) 2.4 1.6 2.8 4.1

network demand (¢), the penalty cost vector (C*), and the target
time-based fill rate vector (I"). For all three heuristic allocation
rules, the dependencies point in the same direction, meaning that
they all have relatively large optimality gaps for the same kind of
problem instances. In particular, optimality gaps seem relatively
large for problem instances where contract violations occur fre-
quently (low I') and are penalized strongly (big (*), and the prob-
ability of multiple demands within one replenishment lead time is
relatively high (big ¢).

To investigate the impact of the design parameter T on the per-
formance of the DA-rule, we have compared the DA-rule with T = 1

(our proposed value), with the DA-rules with T =1 T=2-

2 u’
and T = 4~% on all 2430 problem instances of Experiment I. The

DA-rule with T =} does not only have the smallest average opti-
mality gap over all 2430 problem instances (see Table 5), but also
has the smallest average optimality gap in all 17 subsets defined by
fixing one of the factorial design parameters to one of its admissi-
ble values. Our comparison showed that setting T equal to % isaro-

bust and appropriate choice for all problem instances. Therefore,
we use T = % in the remainder of this paper.

5.3. Characterization of DA-rule

In this subsection we aim to characterize the DA-rule. We do
this by identifying the states where the DA-rule takes a different
decision than the (simple) SA-rule. For our analysis we use the test
bed of Experiment I. We start by decomposing the state space of
each individual problem instance in disjoint sub spaces. The
decomposition is obtained using four simple filters. A filter is like
a decision node in classification trees. It takes as input a state space
S and splits it in n disjoint sub state spaces Sy,...,S, such that
S1U---US, =38, based on the evaluation of the filter expression
for all states s € S. The first filter evaluates for each state (z,j,k)
the customer class k. The second filter evaluates for each state
whether or not the DA-rule and the SA-rule propose the same deci-
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Table 6
DA-rule characterization.
Subset no. State space decomposition Event probability q(S)
Filter 1 Filter 2 Filter 3 Filter 4
1 k=1 aPA = g% N/A N/A 0.309 0
2 aP? g =0 2(a*) =1 0 414
3 . 2(a%)> 1 0 249
4 2(aP)=1 =0 0 N/A
5 2@ =1 0.014 49
6 . 2(a%)> 1 0.001 18
7 z(aP)>1 a*=0 0 N/A
8 2(a*) =1 0.007 68
9 . . ) 2(a*)> 1 0.002 27
10 k=2 aP = g% N/A N/A 0.276 0
11 . aP? # g =0 2@ =1 0.007 321
12 . . ) 2(a?)> 1 0.000 202
13 . . 2(aP?) a**=0 0 N/A
14 . . . 2(a* =1 0.031 55
15 . . . (@) > 1 0.001 19
16 . . 2(aP>1 a*=0 0 N/A
17 . 2(a*M=1 0.015 76
18 . . . 2(a*)>1 0.003 28
19 k=3 aP? = g% N/A N/A 0.264 0
20 . a?t # g a”=0 Z2(a*) =1 0.027 850
21 . . . 2(a*)>1 0.001 608
22 . . 2(a”) a*=0 0 N/A
23 . . . 2(a*M=1 0.024 49
24 . . . 2(a%)> 1 0.001 18
25 . . Z(a”)> 1 a**=0 0 N/A
26 2a)=1 0.014 72
27 2(a%)> 1 0.002 27

sion. For states where the two rules propose the same decision, we
do not decompose further. For all other states, we apply a third and
a fourth filter. The third filter considers for each state the associ-
ated DA decision and distinguishes between three options: (i) the
DA-rule chooses the central warehouse, (ii) the DA-rule chooses
a local warehouse with exactly one item on stock, and (iii) the
DA-rule chooses a local warehouse with more than one item on
stock. The fourth filter is similar to the third, but considers the
SA decision instead of the DA decision. These four filters decom-
pose the state space of each problem instance into
B3x1x1)+(3 x1x(9-1))=27 disjoint sub spaces.

By solving the balance equations for the Markov chain induced
by the DA-rule, we obtain the fraction of all decision events that
belong to each of these 27 sub spaces. This provides valuable infor-
mation on when and how often the DA-rule and the SA-rule pro-
pose different decisions. When the two rules propose different
decisions, we investigate how the DA-rule rates the decision pro-
posed by the SA-rule. For this purpose, we introduce the variable
q(x.y.2.0.0) = [+ 1™ (2~ €,,0,0)| - [ + 1™ (2~ €,,0,0)].
We can interpret q(x,y,z,j,k) as the cost difference (according to
the DA-rule) when fulfilling a demand from customer region j
and customer class k from warehouse x instead of warehouse y if
the actual stock level vector is z. We define the cost difference
q(S) over a set of states S as the weighted sum of all
q(aX(z,j,k),a%N(z,j, k),z,j,k) with (z,j k) € S. Let n(z,j,k) denote the
steady state probability of state (z,j,k) under the DA-rule. Then,
we get:

Z(zj,k)esﬂ:(z?jv k)q(aDA(sz k)7 aSA(Z7j7 k)7 Zvja k)
Z(zj.k)esn(zvjv k)

q(S) = (14)

In Table 6 we have shown the average over all 2430 problem in-
stances of the decision event probabilities and q(S) for all 27 sub
spaces. In line with previous notation, a®® (a**) represents the ware-
house selected by the DA (SA) rule, and z(i) represents the actual
stock level at warehouse i. From Table 6 we learn that on average

for 100% x (0.309 + 0.276 + 0.264) = 84.9% of all part requests the
DA-rule and the SA-rule propose the same allocation decision. From
subset 2 and 3 we learn that the DA-rule will only execute an emer-
gency delivery for 2 hours demand if there is no other option.

Subsets 11 and 20 indicate that for 4 and 8 hours demand this is
different; here the DA-rule prefers an emergency delivery from the
central warehouse over a regular delivery from a local warehouse
with only one item on stock. The explanation is that the DA-rule
anticipates situations where a 2 hours demand occurs before the
triggered replenishment order arrives and finds all nearby local
warehouses out of stock.

The figures for subsets 8, 17, and 26 show that it also happens
that the DA-rule decides to fulfill demand from a local warehouse
with more than one item on stock whereas the SA-rule decides to
select a local warehouse with only one item on stock. Furthermore,
we see that the DA-rule expects the biggest cost reductions in sit-
uations where the DA-rule decides to fulfill an 8 hours demand
from the central warehouse and the SA-rule decides to fulfill this
demand from a local warehouse with only one item on stock (cf.
subset 20; it has the highest q(S) value of all subsets). Because
the average event probability for subset 20 is also relatively high
(2.7%), the decisions covered by this subset seem to be responsible
for a large part of the cost reductions that can be achieved when
switching from the SA-rule to the DA-rule. Summarizing we can
say that the main difference between the DA-rule and the SA-rule
is that the DA-rule is more reluctant to take away the last item at a
local warehouse and less reluctant to use emergency deliveries
from the central warehouse. A major strength of the DA-rule is that
the decision whether or not to fulfill (an 8 hours) demand from a
local warehouse with only one item on stock may depend on the
on hand stock levels at neighboring local warehouses.

5.4. Experiment Il

In this experiment we compare the DA-rule and the SA-rule on a
test bed containing problem instances of real-life size. The test bed
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Fig. 3. Experiment II: Box diagrams for parameters in factorial design.

has been defined in Section 5.1. For each of the 3240 problem in-
stances, we have calculated the average annual total cost, the aver-
age annual regular delivery cost, the average annual emergency
delivery cost, and the average annual penalty cost for the DA-rule,
and the SA-rule. In contrast to Experiment I, we cannot evaluate
the performance of the DA-rule and the SA-rule analytically and
thus we move to discrete event simulation. See Section 5.4.1 for
the details of how the simulation has been set up.

The average cost reduction over all 3240 problem instances
when switching from the SA-rule to the DA-rule is 7.9%. When
leaving out all problem instances with I" =(0.98,098,0.98) (this
parameter value is not present in Experiment I), the average cost
reduction is even 9.7%. This is more than 30% bigger than the aver-
age cost reduction in Experiment I (7.3%) and a clear indication
that the DA-rule scales well. To investigate how the cost savings
depend on the various problem characteristics, we have created a
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box diagram for each parameter in the factorial design. The box
diagrams are shown in Fig. 3a-f and show the median, the 25%
and 75% percentiles, and the minimum and maximum cost
reductions.

Fig. 3a-f gives a similar picture as the results in Experiment I (cf.
Table 4). We see that the cost reduction for problem instances with
region indicator R = r, (emergency delivery time of 8 hours) is big-
ger than the cost reduction for problem instances with region indi-
cator R =r; (emergency delivery time of 4 hours). We also see that
the cost reduction gets bigger if the service area gets smaller.
Fig. 3c shows no clear correlation between the cost reduction
and the weight vector w of the customer classes. Fig. 3d-f however,
shows a strong correlation between the cost savings and the rela-
tive network demand ¢, the penalty cost vector (P, and the target
time-based fill rate vector I', just as in Experiment I.

All together, switching from the SA-rule to the DA-rule seems in
particular beneficial in situations where: (i) contract violations are
expensive and occur frequently, (ii) emergency deliveries involve
high delivery and/or penalty cost, and (iii) the probability of multi-
ple demands within one replenishment lead time is relatively high.
In all these situations, the SA-rule suffers from the weakness that it
does not anticipate future stockouts and the contract violations
and penalty costs this may cause.

5.4.1. Discrete event simulation

Here, we describe how we have set up our discrete event simu-
lations. Each simulation run is divided in 21 sub-runs of 5000 part
failure events each. The first sub-run is used as a warming-up per-
iod. For all other 20 sub-runs we calculate the average annual total
cost. From these 20 samples we calculate the sample mean and the
coefficient of variation. If the coefficient of variation is smaller than
0.01/2 the simulation is terminated. Otherwise, we double the
number of part failure events we want to simulate and merge
the current 20 sub-runs into 10 new ones by merging sub-runs 1
with 2, 3 with 4, ..., and 19 with 20. Under some mild conditions
this methods guarantees that the simulated average annual total
cost does not differ more than 1% from its expected value with a
probability of more than 95%. This method is called the method
of non-overlapping batch means (NOBM). For a comprehensive
description of NOBM we refer the reader to Steiger and Wilson
(2001).

6. Conclusions

We conclude by summarizing our main results. We developed a
dynamic rule for allocating available network stock to real-time
part requests in a single echelon multi location spare parts net-
work with multiple customer classes where part requests can often
be fulfilled from more than one warehouse within the service
deadline. Our dynamic allocation rule is a one-step lookahead pol-
icy that approximates the optimal relative cost with an estimate of
the relative cost under a static allocation rule.

First, we showed on a test bed with small problem instances
that the optimality gap of our dynamic allocation rule is small
(1.6% on average). This is much smaller than the optimality gap
of a simple but widely used static allocation rule (9.6% on average).
We also showed that on problem instances of real-life size, the dy-
namic allocation rule achieves average cost savings of 7.9% in com-
parison to the static allocation rule. This indicates that the dynamic
allocation rule scales very well. Second, we showed that the dy-
namic allocation rule in particular outperforms the static allocation
rule when contract violations are expensive and occur frequently,
emergency deliveries involve high delivery and/or penalty cost,
and the probability of multiple demands within one replenishment

lead time is relatively high. Third, we characterized our dynamic
allocation rule and showed that it mainly differs from the static
allocation rule in situations where the static allocation rule selects
a warehouse with only one item on stock, and the actual part re-
quest has a relatively high maximum response time. In particular,
we showed that switching from the greedy static allocation rule to
the dynamic allocation rule with (limited) lookahead changes the
role of emergency deliveries from a tool of last resort to a tool that
is actively used to avoid stock level reductions at local warehouses
in situations where this is considered undesirable.

For future research, it is relevant to investigate the impact of de-
mand forecast errors on the performance of the DA-rule. Another
interesting direction for future research is the optimization of base
stock levels under a dynamic allocation rule like the one presented
in this paper. We plan to investigate this direction in the near fu-
ture. We strongly believe that we can calculate excellent base stock
levels using simulation-based optimization. In simulation-based
optimization, simulation is used to evaluate the performance of
base stock level vectors, and a standard optimization technique
(e.g. local search) is used to find a good base stock level vector.
When simulating the system to evaluate a base stock level vector,
we allocate demand according to the DA-rule. Even for (very) large
problem instances, simulation-based optimization seems feasible
because: (i) the DA-rule does not contain any free parameters,
(ii) the DA-rule performs very well for arbitrary base stock level
vectors, and (iii) during each simulation, we can calculate on hand
stock histograms for each local warehouse and use this informa-
tion to steer the base stock level optimization.
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Appendix A. Calculation of base stock levels

In this appendix, we formally state the method for calculating a
base stock level vector S from a target time-based fill rates vector
T. It consists of two parts. Algorithm 2 approximates the average
cost per time unit and the time-based fill rates for given base stock
level vectors. In Algorithm 3 we use this evaluation procedure to
find a base stock level vector such that the (approximated) time-
based fill rates exceed the target time-based fill rates, and the
(approximated) average annual total cost is low.

Algorithm 2. Calculate C(S) and T'(S)

initialization

v(ij,k) €{0,....} x {1,....]} x {1,...,K}
Y, k) e {1,....J} x{1,...,K}
Vie{l,....I}

Dy=0

Dy 1)jk = 4k

D; =Y K. Dy
i = 2.j=12-k=1"ijk

Po=0
Vie{l,....I} pi:B(S,,%) cf. (8)
repeat
v(q.j. k) €1{2,..., < {1,.. )y x{2,...,K}  Diygpjk = Pry(a-—1)Pruia-1)ik
vie{1,....1} Di = ¥, Y1 Dy
Vie{l,...,I} pi= B(s,,%) cf. (8)

until Dj; does not change more than € between two consecutive iterations
finalization

C(8) = o> 1 X1 (1 = pi)Dige

- . P . "
r'y(s) = [Z§:02§:1 (1- pi)DU'koijk]/{ZL])vjk] with oy, = 1 if t; < Wy, and
0 otherwise
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Algorithm 3. Calculate S(T")

initialization
vie{l,...,I} Si=0

calculate 6(5) and T'(S) using Algorithm 2
vie{l,...,I} calculate AC(S,i) = C(S) — C(S + ;)

while 3k|T, < I, do

i* = argmaxic(1,.. .n[AC(S, 1)]

Si* = Sit +1

calculate 6(5) and T'(S) using Algorithm 2
Vie{l,...,I} calculate AC(S,i) = C(S) — C(S + ;)
end while
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