
SERVICE DESIGN

AS A SET OF RECURRING

ARCHITECTURAL DECISIONS:

PARADIGMS, PRINCIPLES, PATTERNS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

12th Annual Symposium on Future Trends in

Service-Oriented Computing, HPI Research School

Potsdam, April 27, 2017

Abstract

 Service-oriented computing is a key enabler for major trends such as cloud

computing, Internet of things, and digital transformation. About a decade after

the first wave of Service-Oriented Architecture (SOA) patterns and platforms

reached a plateau of maturity and market saturation, microservices are

currently emerging as a state-of-the-art implementation approach to SOA that

leverages recent advances in software engineering and agile practices such as

domain-driven design, continuous delivery and deployment automation. Due to

the invariant intricacies and fallacies pertaining to distributed systems, service

interface design remains a wicked problem irrespective of currently trending

service decomposition paradigms and other market dynamics. Hence, service

designers and API managers seek design guidance and reusable architectural

knowledge for this problem domain.

 This presentation first recapitulates selected SOA principles and establishes

seven corresponding microservices tenets. It then reports on the ongoing

compilation of a service design pattern catalog that complements previous

such approaches, and discusses related tool support. It concludes with a

reflection on open research challenges and problems.

© Olaf Zimmermann, 2017.

Page 2

ZIO Past and Present

 Research & development and professional services since 1994

 em. IBM Solution Architect & Research Staff Member

 Systems & Network Management, J2EE, Enterprise Application Integration/SOA

 em. ABB Senior Principal Scientist

 Enterprise Architecture Management/Legacy System Modernization/Remoting

 Selected industry projects and coachings

 Product development and IT consulting (middleware, SOA, information

systems, SE tools); first IBM Redbook on Eclipse/Web Services (2001)

 Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, Web Services/XML

 Focus @ HSR: design of distributed/service-oriented systems

 Cloud computing, Web application development & integration (runtime)

 Model-driven development, architectural decisions (build time)

 (Co-)Editor, Insights column, IEEE Software

 PC member, e.g., ECSA, ESOCC, WICSA, SATURN, SummerSoC

© Olaf Zimmermann, 2017.

Page 3

http://www.redbooks.ibm.com/redbooks/pdfs/sg246292.pdf
http://design.inf.usi.ch/journals/IEEESoftware
https://www.cs.kent.ac.uk/events/2017/ECSA2017/previousyears.html
http://esocc2017.ifi.uio.no/organization.html
http://www.wicsa.net/
https://www.sei.cmu.edu/saturn/2017/
http://www.summersoc.eu/

Agenda

1. Paradigms: Service-Oriented Computing (Re-)Visited

 Service-Oriented Architecture vs. Microservices Architecture (?)

 Microservices tenets: agile approach to service realization

2. Principles: From OOAD to SOAD and Agile Architecting

 IDEAL cloud application architectures, coupling criteria

 Architectural Decision Capturing and Sharing (OLAF, AKMAD)

3. Patterns: From Enterprise Application/Integration to Service Design and

Conversations

 Interface Representation Patterns (IRP):

Pagination, Service Granularity (Business/Technical), Quality of Service

4. Open Source Tools for Service Design and Arch. Decision Making

 ADMentor, Service Cutter

5. Conclusions and Outlook

 Research challenges, vision and roadmap

© Olaf Zimmermann, 2017.

Page 4

Position Summary & Key Take Away Messages of this Talk

 Microservices do not constitute a new style, but services are here to stay

 Microservices evolved as an implementation approach to SOA that leverages

recent advances in agile practices, cloud computing and DevOps

 Microservices Architecture (MSA) constrains the SOA style to make services

independently deployable and scalable (e.g., via decentralization)

 Architectural principles and patterns characterize architectural styles

 e.g. loose coupling is a key SOA principle (multiple dimensions)

 There is no single definite answer to the “what is the right granularity?”

question, which has several context-specific dimensions and criteria

 Business granularity: semantic density (role in domain model and BPM)

 Technical granularity: syntactic weight and QoS entropy

 Platform-independent service design can benefit from interface

representation patterns such as Parameter Tree, Pagination, Wish List

 Pattern-centric service design involves architectural decisions that recur

© Olaf Zimmermann, 2017.

Page 5

Process-Enabled Order Mgmt. SOA for Telecom Service Provider

Presentation

Layer

Business Logic

Backend

Integration &

Persistence

Layer

Reference: Zimmermann et al, „SOA and Business Process Choreography in an Order Management Scenario:

Rationale, Concepts, Lessons Learned“, OOPSLA 2005 conference companion, ACM Press, 2005

“We decided for Apache Axis as our Enterprise

Service Bus (ESB) asset

because it performs and scales well.”

“We decided for the Model-View-Controller

(MVC) pattern to control Web page flow

because we gained positive experience with it

on many similar projects.”

“We decided for the BPEL language

as workflow technology because it is

standardized and supported by tools.”

© Olaf Zimmermann, 2017.

Page 6

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

Page 7

© Olaf Zimmermann, 2017.

No single definition – “SOA is different things to different people”

 A set of services that a business wants to expose to their

customers and partners, or other portions of the organization.

 An architectural style which requires a service provider, a service

requestor (consumer) and a service contract (a.k.a. client/server).

 A set of architectural patterns such as enterprise service bus,

service composition, and service registry, promoting principles

such as modularity, layering, and loose coupling to achieve design

goals such as separation of concerns, reuse, and flexibility.

 A programming and deployment model realized by standards,

tools and technologies such as Web services and Service

Component Architecture (SCA).

Business

Domain

Analyst

IT

Architect

Developer,

Administrator

Adapted from IBM SOA Solution Stack (S3) reference architecture and SOMA method, https://www-01.ibm.com/software/solutions/soa/

https://www-01.ibm.com/software/solutions/soa/

The Seven ZIO Tenets for Microservices Implementations of SOA

1. Fine-grained interfaces to single-responsibility units that encapsulate data and

processing logic are exposed remotely to make them independently scalable,

typically via RESTful HTTP resources or asynchronous message queues.

2. Business-driven development practices and pattern languages such as Domain-

Driven Design (DDD) are employed to identify and conceptualize services.

3. Cloud-native application design principles are followed, e.g., as summarized in

Isolated State, Distribution, Elasticity, Automated Management and Loose

Coupling (IDEAL).

4. Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot

persistence strategy.

5. Lightweight containers are used to deploy services.

6. Decentralized continuous delivery is practiced during service development.

7. Lean, but holistic and largely automated approaches to configuration and fault

management are employed (a.k.a. DevOps).

© Olaf Zimmermann, 2017.

Page 8

Reference: O. Zimmermann, Microservices Tenets – Agile Approach to Service Development and Deployment,

Proc. Of SummerSoC 2016, Springer Computer Science – Research and Development, 2016 (CSR&D Paper).

http://rdcu.be/mJPz

Microservices – An Early and Popular Definition (2014)

 J. Lewis and M. Fowler (L/F): “[…] an approach to developing a single

application as a suite of small services, each running in its own process

and communicating with lightweight mechanisms, often an HTTP

resource API. These services are built around business capabilities and

independently deployable by fully automated deployment machinery.

There is a bare minimum of centralized management of these services,

which may be written in different programming languages and use

different data storage technologies.”

 IEEE Software Interview with J. Lewis, M. Amundsen, N. Josuttis:

Page 9

© Olaf Zimmermann, 2017.

Reference: http://martinfowler.com/articles/microservices.html

http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://martinfowler.com/articles/microservices.html
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

Microservices Definition: 4+1 Viewpoint Mapping (More: CSR&D Paper)

Page 10

© Olaf Zimmermann, 2017.

Application Component

Property (Gartner/TMF)

Mapping to 4+1 Viewpoint

Model (Kruchten 1995)

Mapping to ZIO

Tenet

Novel or “Same Old

Architecture”?

tightly scoped Scenario/Use Case, Logical 1, 2 SOA

strongly encapsulated Logical, Development 1 SOA

loosely coupled Development, Process (Integr.) 1, 3 SOA

independently deployable Process, Physical 1 novel

independently scalable Process, Physical 1 novel

From Tenets and Principles to Patterns and Decisions

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods and

practices

© Olaf Zimmermann, 2017.

Page 11

IDEAL Cloud Application Properties (Fehling, Leymann et al.)

Distribution: applications are decomposed to…

… use multiple cloud resources

… support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically

Scale out: performance increase through addition of resources

Scale up: performance increase by increasing resource capabilities

? Loose Coupling: influence of application components is limited

Example: failures should not impact other components

Example: addition / removal of components is simplified

Isolated State: most of the application is stateless with respect to:

Session State: state of the communication with the application

Application State: data handled by the application

Automated Management: runtime tasks have to be handled quickly

Example: exploitation of pay-per-use by changing resource numbers

Example: resiliency by reacting to resource failures

© Olaf Zimmermann, 2017.

Page 12

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.org/

http://cloudcomputingpatterns.org/

SOA Principle and IDEAL Application Property: Loose Coupling

 Academic contributions (research results):

 General software engineering/architecture literature since 1960s/1970s

 Starting from D. Parnas (modularization, high cohesion/low coupling)

 ESOCC 2016 keynote by F. Leymann and PhD theses (e.g. C. Fehling):

 Four types of autonomy: reference (i.e., location), platform, time, format

 WWW 2009 presentation and paper by C. Pautasso and E. Wilde:

 12 facets used for a remoting technology comparison, e.g., discovery, state,

granularity

 Practitioner heuristics (a.k.a. coupling criteria) scattered in books,

articles, blogs:

 SOA in Practice book by N. Josuttis, O’Reilly 2007

 11 types of (loose) coupling; emphasis on versioning and compatibility

 IBM Redbook SG24-6346-00 on SOA and ESB (M. Keen et al.), IBM 2004

 Coupled vs. decoupled continuum: semantic interface, (business) data model,

QoS (e.g. transactional context, reliability), security

 DZone, IBM developerWorks articles, InfoQ, MSDN, …

© Olaf Zimmermann, 2017.

Page 13

http://esocc2016.eu/keynotes/
http://dret.net/netdret/docs/loosely-coupled-www2009/(1)
http://www2009.eprints.org/92/1/p911.pdf
http://www.soa-in-practice.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open
http://www.dzone.com/mz/cloud
https://www.infoq.com/architecture/

Coupling Criteria (CC) in “Service Cutter” (ESOCC 2016 Paper)

 E.g. Semantic Proximity can be observed if:

 Service candidates are accessed within same use case (read/write)

 Service candidates are associated in OOAD domain model

 Coupling impact (note that coupling is a relation not a property):

 Change management (e.g., interface contract, DDLs)

 Creation and retirement of instances (service instance lifecycle)

© Olaf Zimmermann, 2017.

Page 14

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

From Tenets and Principles to Patterns and Decisions

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods and

practices

© Olaf Zimmermann, 2017.

Page 15

Service Granularity Test (by Example)

 Test: Do the exemplary services qualify as microservices?

 “small” (Lewis/Fowler) and “fine grained” (Netflix, ZIO)?

 “having a single responsibility” (R. Martin)?

 “being maintainable by a 2-pizza team” (J. Bezos)?

 supporting IDEAL principles such as loose coupling (Fehling et al, ZIO)?

 Example A: Exchange Rates in YaaS/Hybris (SAP):

 https://devportal.yaas.io/services/exchangerates/latest/

 Example B: Create an Outbound Delivery with a Reference to a Sales

Order (in ESA/Hana via SAP Business Hub)

 https://api.sap.com/#/catalog/a7a325f837df42f8a5c1083890e28801/II_SHP

_OUTBOUNDDELIVERYCWRRC/SOAP

© Olaf Zimmermann, 2017.

Page 16

https://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.telegraph.co.uk/business/2016/10/12/amazons-two-pizza-rule-isnt-as-zany-as-it-sounds/
https://devportal.yaas.io/services/exchangerates/latest/
https://api.sap.com/#/catalog/a7a325f837df42f8a5c1083890e28801/II_SHP_OUTBOUNDDELIVERYCWRRC/SOAP

Service Granularity in Scientific Literature and Practice Reports

 Business granularity (a.k.a. semantic density) has a major impact on

agility and flexibility, as well as maintainability

 Position of service operation in Business Architecture, e.g., expressed in a

Component Business Model (CBM) or enterprise architecture model

 Amount of business process functionality covered

 Entire process? Subprocess? Activity?

 Number and type of analysis-level domain model entities touched

 Technical granularity (a.k.a. syntactic weight) determines runtime

characteristics such as performance and scalability, interoperability –

but also maintainability and flexibility

 Number of operations in WSDL contract, number of REST resources

 Structure of payload data in request and response messages

 QoS entropy adds to the maintenance effort of the service component

 Backend system interface dependencies and their properties (e.g. consistency)

 Security, reliability, consistency requirements (coupling criteria)

© Olaf Zimmermann, 2017.

Page 17

https://en.wikipedia.org/wiki/Component_business_model

Granularity Scores by Service Pattern and Granularity Type

© Olaf Zimmermann, 2017.

Page 18

4

2

1

5

33

5

1

2

44

1

2

5

3

0

1

2

3

4

5

6

Busines Transaction
(Activity)

Entity Search Status Check Master Data CRUD Periodic Report

Service Granularity Scores (Relative, 1 to 5 Scale)

Semantic Density Syntactic Weight QoS Entropy (Transactionality, Security, Reliability)

Granularity Types and Criteria – Findings

 Granularity is property of service contract exposed by a service provider

 Not an exact measure/metric, but a heuristic/an indicator of modularity and

cohesion (on different levels of abstraction)

 Business granularity vs. technical granularity (syntax, QoS)

 Can’t really tell the “right” size w/o use cases and (de)coupling criteria –

“it depends”:

 Clients, contexts, concerns differ – for good reasons!

 Service semantics, information need of consumer

 Hidden complexity (backend, relations)

 Conclusion: A continuum of service granularity patterns exists

 There is no such thing as a “right” service size for all systems and service

ecosystems

 Sometimes granularity is also seen as an architectural principle:

 https://en.wikipedia.org/wiki/Service_granularity_principle

© Olaf Zimmermann, 2017.

Page 19

https://en.wikipedia.org/wiki/Service_granularity_principle

Service Granularity Patterns: In/Out Message Structure

Decision drivers: Functional requirements (domain model), capabilities of BPEL, SOAP,

WSDL, XML processors (verbosity), interoperability, network topology, number of

deployment artifacts and generated code structure, strong vs. weak typing philosophy.

Scope:

Service Operation

Issue: In Message Granularity (Conceptual/Technology Level)
How many message parts should be defined in the service contract?

How deeply should the part elements be structured?

The four alternatives have not been published as patterns yet.

Alternative 1:

Atomic Parameter

Pattern

Single scalar (Dot)

Easy to process for

SOAP/XML engines,

much work for

programmer

Phase:

Macro Design

Recommendation: All alternatives have their place; alternatives 2 and 3 are often chosen.

Base decision on layer and service type. Avoid overly deep nesting of data structures

unless you want to stress test the XML processing . Minimize message verbosity.

Service

Model

Service

Type

WSDL,

XML Schema

Contracts

Alternative 2:

Parameter Tree

Pattern

Single complex

parameter (Bar)

Deep structure and

exotic types can

cause

interoperability

issues.

Alternative 3:

Atomic Parameter

List Pattern

Multiple scalar

parameters

(Dotted Line)

Handled by all

common engines,

some programmer

convenience.

Enterprise

Data Model

Business

Granularity

Alternative 4:

Parameter Comb

Pattern

Multiple complex

parameters

Combination of

options 2 and 3,

biggest overhead

for processing

engines.

Out Message

Granularity

Operation To

Service

Grouping

XML Profiling

WDSL, XSD

Editor

Selection

Role:

Service Modeler

Component

Wrapping

Page 20

© Olaf Zimmermann, 2017.

Reference:

Adapted from

IBM, SATURN

2010

Towards an Interface Representation Pattern Language (IRP)

Page 21

© Olaf Zimmermann, 2017.

Foundations

Web API Design and

Evolution (WADE)

Service Identification

(Process)

Service Evolution (Lifecycle Management)

.Core Service Design
Content

(Semantic

Density)

Delivery

(QoS

Entropy)

Representation

(Syntactic Weight)

Cross

Cutting

Concerns

Basic

Remote Service

Abstractions

API Styles

and Types

Service

Coupling

Criteria

Interface Facets/

Granularity Types

Candidate Patterns in IRP (Work in Progress)

Page 22

© Olaf Zimmermann, 2016.

Category

Foundations Vertical Integration,

Horizontal Integration

Public API Community API Solution-Internal

API

Process Contract First Static Discovery Dynamic Discovery Service Model

Representation AtomicParameter

(Single Scalar, Dot)

Parameter Tree

(Single Complex)

Atomic Parameter

List (Mult. Scalars,

Dotted Line)

ParameterComb

(Multiple Complex)

Pagination, Page Query Parameter Cursor Offset

Wish List Request Deck Metadata

Parameter

Annotated

Parameter List

Content

Semantics
Command Reporting Service Status Check Master Data

Update

QoS Service Contract,

Context Object

SLA-SLO API Key/Access

Token

Rate Limit

Evolution Semantic Versioning,

Version Identifier

Two (Versions) in

Production

Aggressive

Deprecation

Liberal Receiver/

Conservative

Sender

Reference: O. Zimmermann et al., Interface Representation Patterns, submitted to EuroPLOP 2017

http://www.europlop.net/content/conference-0

Example IRP: Pagination (1/2)

 Context

 An API endpoint and its calls have been identified and specified.

 Problem

 How can a provider transmit large amounts of repetitive or inhomogeneous

response data to a consumer that do not fit well in a single response

message?

 Forces

 Data set size and data access profile (user needs), especially number of

data records required to be available to a consumer

 Variability of data (are all result elements identically structured? how often

do data definitions change?)

 Memory available for a request (both on provider and on consumer side)

 Network capabilities (server topology, intermediaries)

 Security and robustness/reliability concerns

Page 23

© Olaf Zimmermann, 2017.

Example IRP: Pagination (2/2)

 Solution

 Divide large response data sets into manageable and easy-to-transmit chunks.

 Send only partial results in the first response message and inform the consumer

how additional results can be obtained/retrieved incrementally.

 Process some or all partial responses on the consumer side iteratively as

needed; agree on a request correlation and intermediate/partial results

termination policy on consumer and provider side.

 Variants

 Cursor-based vs. offset-based

 Consequences

 E.g. state management required

 Know Uses:

 Public APIs of social networks

Page 24

© Olaf Zimmermann, 2017.

From Tenets and Principles to Patterns and Decisions

 Business goals

and design goals

 Paradigms

(defined by tenets)

 Principles

 Patterns

 Decisions

 Methods and

practices

© Olaf Zimmermann, 2017.

Page 25

AD Modeling with Reuse – Context and Motivation (by Example)

 AD capturing matters, e.g. ISO/IEC/IEEE 42010 has a rationale element

 But it remains an unpopular documentation task

– particularly, but not only in agile communities

 Effort vs. gain (feeding the beast)?

 Example (from cloud application design): Session State Management

 Shopping cart in online commerce SaaS (e.g., Amazon) has to be stored

while user is logged in; three design options described in literature

“In the context of the Web shop service, facing the need to keep user session data

consistent and current across shop instances, we decided for the Database Session

State Pattern from the PoEAA book (and against Client Session State or Server

Session State) to achieve ideal cloud properties such as elasticity, accepting that a

session database needs to be designed, implemented, and replicated.”
Reference: (WH)Y-template first presented at SEI SATURN 2012 and later published in IEEE Software and InfoQ,

http://www.infoq.com/articles/sustainable-architectural-design-decisions

(inspired by decision part in George Fairbanks’ Architecture Haiku, WICSA 2011 tutorial)

© Olaf Zimmermann, 2017.

Page 26

http://www.iso-architecture.org/42010/
http://martinfowler.com/eaaCatalog/index.html
http://www.infoq.com/articles/sustainable-architectural-design-decisions

From Decisions Made to Decisions Required (Guidance)

 Approach: Refactor decision capturing templates into problem-option-

driver fragments and change tone, to separate concerns and to ease reuse

“In the context of the Web shop service, facing the need to keep user session data consistent and

current across shop instances, we decided for the Database Session State Pattern from the PoEAA

book (and against Client Session State or Server Session State) to achieve cloud elasticity, accepting

that a session database needs to be designed, implemented, and replicated.”

 “When designing a stateful user conversation (for instance, a shopping basket

in a Web shop), you will have to decide whether and how session state is

persisted and managed.” (question: is this a requirement or stakeholder concern?)

 “Your conceptual design options will be these patterns: Client Session State,

Server Session State, and Database Session State.”
(question: are patterns the only types of options in AD making?)

 “The decision criteria will include development effort and cloud affinity.”
(question: what else influences the decision making?)

© Olaf Zimmermann, 2017.

Page 27

Curate {decision need, solutions, qualities} for

reuse – but not the actual decision outcomes

http://martinfowler.com/eaaCatalog/index.html

IRP Selections (a.k.a. Service Design Space) in ADMentor

 Patten selection and

adoption qualifies as

AD making

 Rationale to be

captured: qualities,

conformance with

principles, etc.

 Guidance through

service design

space via problem-

option pair modeling

 In ADMentor

© Olaf Zimmermann, 2017.

Page 28

ProblemSpace IRP Problem Space Diagram

Service Identification
Method

Resource-Based OOAD

Analyis-Level BPM

API Call Design

Application of Chosen
Method Returns API
Endpoint Plan listing
API Calls

Message Exchange
Pattern

Request ReplyOne Way

Message Exchange
Format

JSON

XML

Out Message
Granularity

In Message
Granularity

Atomic Parameter Atomic Parameter List Parameter Tree Parameter Comb

Pagination Pattern

Cursor-Based

None Offset-Based

Additional Pattern Selection and
Adoption Decisions (separate diagrams):

 Expansion Pattern Usage (e.g., Wish
List)?

 Metadata Parameters

 Rate LImit

 SLA-SLO

 etc.

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adRaises»

«adAddressedBy»

«adRaises»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»«adAddressedBy»«adAddressedBy»

ADMentor Tool (AddIn to Sparx Enterprise Architect)

 ADMentor is openly available at https://github.com/IFS-HSR/ADMentor

 Project website http://www.ifs.hsr.ch/index.php?id=13201&L=4

© Olaf Zimmermann, 2017.

Page 29

https://github.com/IFS-HSR/ADMentor
http://www.ifs.hsr.ch/index.php?id=13201&L=4

Research Problems in ESOCC 2007 Keynote – Still Open!

Page 30

© Olaf Zimmermann, 2017.

(screen caption clickable)

(screen caption clickable)

Software Service

Engineering

http://www.soadecisions.org/download/BIT-SOADecisions4ECOWSExt.pdf
http://www.soadecisions.org/download/BIT-SOADecisions4ECOWSExt.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2046/pdf/09021_abstracts_collection.2046.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2046/pdf/09021_abstracts_collection.2046.pdf

Service Design Science – Towards a Research Roadmap

 My take on future trends in service-oriented computing/service design:

 Overarching knowledge question: How to adopt existing and new computer

science research results for the context of agile Web/service engineering?

 “Long live services – of various kinds and granularities” (ZIO, 2016)

© Olaf Zimmermann, 2017.

Page 31

CS Field Contribution Type(s)

Software engineering, SoC Design by contract, MDSE, value networks

Databases, Information Systems Representation modeling, query languages

Networking Protocol design (conversations), contract verification

(Interoperability. conformance testing)

Business Process Management and

Modeling (BPM)

Service identification in static and dynamic business

models, composition middleware

Distributed Systems,

Telecommunication Networks

Event-driven, reactive, adaptive architectures,

service discovery, metering and billing

Internet Technologies, Web Engineering Semantic (micro-)service linking (not matchmaking)

Theoretical Computer Science Formal definitions: SOA/MSA, service, MEP, etc.

http://rdcu.be/mJPz

Summary

 Thank you vey

much!

 Feedback?

 Questions?

 Comments?

 Ideas?

 Next Steps?

© Olaf Zimmermann, 2017.

Page 32

SERVICE DESIGN

AS A SET OF RECURRING

ARCHITECTURAL DECISIONS:

PARADIGMS, PRINCIPLES, PATTERNS

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect

Institute für Software, HSR FHO

ozimmerm@hsr.ch

Service Design and Service Granularity –

BACKGROUND INFORMATION

April 2017

SOA Foundation: Partitioning into Components and Services

Page 34

© Olaf Zimmermann, 2017.

Logic

Data

On which tier

should

existing

and new

applications be

integrated?

Traditional

Applications

SOA

Services

Basket of ServicesDiscrete Applications

(Two or Three Tiers)

Business Process

Services

Components

In
te

g
ra

tio
n
 A

rc
h
ite

c
tu

re

(E
n
te

rp
ris

e
 S

e
rv

ic
e

 B
u
s
)

Q
o

S
, S

e
c
u
rity

, M
a

n
a

g
e

m
e

n
t &

 M
o

n
ito

rin
g

(In
fra

s
tru

c
tu

re
 S

e
rv

ic
e

s
)

Business Process

Services

Components

In
te

g
ra

tio
n
 A

rc
h
ite

c
tu

re

(E
n
te

rp
ris

e
 S

e
rv

ic
e

 B
u
s
)

Q
o

S
, S

e
c
u
rity

, M
a

n
a

g
e

m
e

n
t &

 M
o

n
ito

rin
g

(In
fra

s
tru

c
tu

re
 S

e
rv

ic
e

s
)

Layering based on IBM SOA reference architecture

Example:

An insurance company uses three SAP R/3, MS Visual Basic, and COBOL applications to manage customer

information, check for fraud, and calculate payments. The user interfaces (UIs) are the only access points.

A multi-step, multi-user business process for claim handling, executing in IBM WebSphere, is supposed to

reuse the functions in the existing applications. How to integrate the new business process with the three

legacy applications in a flexible, secure, and reliable way?

Users

UI

Architectural Principles and Heuristics

 Object-Oriented Analysis and Design (OOAD), Component-Based

Software Engineering (CBSE)

 Single Responsibility Principle (SRP) by R. Martin (revisited by K. Henney)

 Fowler’s First Law of Distributed Objects: Don’t distribute your objects

 Cheesman/Daniels, Catalyst approach, Larman GRASP

 SOAD vision (2004)

 EAM + BPM + OOAD

 Coarse and fine grained granules

 Several proposals from industry

responded to call for methods

(none of which seem to sustain)

 Rules of Thumb (ZIO)

 POINT principles for API design

 “If in doubt leave it out” (metamodeling, method engineering and adoption)

 “Worst first” (architectural decision making)

© Olaf Zimmermann, 2017.

Page 35

SOA Principles and Patterns vs. Microservices Tenets

Page 36

© Olaf Zimmermann, 2017.

Aspect/Capability SOA Principles and Patterns Microservices Tenets and Patterns

Core metaphor (Web) Service, Service Contract Fine-grained interfaces, RESTful resources

Method OOAD/UP; SOMA and others Domain-Driven Design, agile Practices

Architectural principles Layering, loose coupling, flow

independence, modularity

IDEAL Cloud Architectural Principles

Data storage Information Services (RDB, File) Polyglot Persistence (NoSQL, NewSQL)

Deployment and hosting Virtual machines, JEE, SCA;

Application Hosting/Outsourcing

Lightweight Containers (e.g., Docker,

Dropwizard); Cloud Computing

Build tool chain n/a (proprietary vendor

approaches, custom developed

in-house assets, ITIL and other

management frameworks)

Decentralized Continuous Delivery

Operations (FCAPS) Lean but Comprehensive System

Management (a.k.a. DevOps)

Message routing,

transformation, adaption

Enterprise Service Bus (ESB) API Gateway, lightweight messaging

systems (e.g., RabbitMQ)

Service composition Service Composition DSLs, POPL Plain Old Programming Language (POPL)

Lookup Service Registry Service Discovery

Reference: O. Zimmermann, Microservices Tenets – Agile Approach to Service Development and Deployment,

Proc. Of SummerSoC 2016, Springer Computer Science – Research and Development, 2016.

http://rdcu.be/mJPz

 Entity-relationship model

 Use cases

 System characterizations

 Aggregates (DDD)

Coupling information is

extracted from these artifacts.

Service Cutter

Advisor: Prof. Dr. Olaf Zimmermann

Co-Examiner: Prof. Dr. Andreas Rinkel

Project Partner: Zühlke Engineering AG

Bachelor Thesis Fall Term 2015

Software Lukas Kölbener Michael Gysel

A Software Architect’s Dilemma….

Step 1: Analyze System

Step 2: Calculate Coupling

Step 3:

Visualize Service Cuts

How do I split

my system into

services?

 Data fields, operations and artifacts

are nodes.

 Edges are coupled data fields.

 Scoring system calculates edge

weights.

 Two different graph clustering

algorithms calculate candidate

service cuts (=clusters).

A clustered (colors) graph.

Technologies:

Java, Maven, Spring (Core,

Boot, Data, Security, MVC),

Hibernate, Jersey, Jhipster,

AngularJS, Bootstrap

The catalog of 16 coupling criteria

https://github.com/ServiceCutterA clustered (colors) graph.

 Priorities are used to

reflect the context.

 Published Language

(DDD) and use case

responsiblities are

shown.

Other Research Projects: Architectural Refactoring Content/Tool

 Pattern language for Web

API Design and Evolution?

 Lean Decision Backlog?

© Olaf Zimmermann, 2017.

Page 38

(screen captions clickable)

https://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4
https://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4
http://www.iaas.uni-stuttgart.de/institut/ehemalige/zimmermann/indexE.php
http://www.iaas.uni-stuttgart.de/institut/ehemalige/zimmermann/indexE.php

Software Architecture and SoC Resources

Page 39

© Olaf Zimmermann, 2017.

(screen captions clickable)

https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.computer.org/csdl/mags/so/2016/06/index.html
https://www.computer.org/csdl/mags/so/2016/06/index.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214

