SERVICE DESIGN
AS A SET OF RECURRING
ARCHITECTURAL DECISIONS:
PARADIGMS, PRINCIPLES, PATTERNS

12th Annual Symposium on Future Trends in
Service-Oriented Computing, HPI Research School

Potsdam, April 27, 2017

Prof. Dr. Olaf Zimmermann (ZIO)

Certified Distinguished (Chief/Lead) IT Architect
Institute fur Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Abstract

M Service-oriented computing is a key enabler for major trends such as cloud
computing, Internet of things, and digital transformation. About a decade after
the first wave of Service-Oriented Architecture (SOA) patterns and platforms
reached a plateau of maturity and market saturation, microservices are
currently emerging as a state-of-the-art implementation approach to SOA that
leverages recent advances in software engineering and agile practices such as
domain-driven design, continuous delivery and deployment automation. Due to
the invariant intricacies and fallacies pertaining to distributed systems, service
interface design remains a wicked problem irrespective of currently trending
service decomposition paradigms and other market dynamics. Hence, service
designers and APl managers seek design guidance and reusable architectural
knowledge for this problem domain.

m This presentation first recapitulates selected SOA principles and establishes
seven corresponding microservices tenets. It then reports on the ongoing
compilation of a service design pattern catalog that complements previous
such approaches, and discusses related tool support. It concludes with a
reflection on open research challenges and problems.

O HSR
HOCHSCHULE FUR TECHNIK

BB Page 2
RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

™ The Open Group
pert
Certified

Distinguished Architect

Z10 Past and Present

B Research & development and professional services since 1994

em. IBM Solution Architect & Research Staff Member

Systems & Network Management, J2EE, Enterprise Application Integration/SOA
em. ABB Senior Principal Scientist

Enterprise Architecture Management/Legacy System Modernization/Remoting

m Selected industry projects and coachings

Product development and IT consulting (middleware, SOA, information
systems, SE tools); first IBM Redbook on Eclipse/Web Services (2001)

Tutorials: UNIX/RDBMS, OOP/C++/J2EE, MDSE/MDA, Web Services/XML

m Focus @ HSR: design of distributed/service-oriented systems
Cloud computing, Web application development & integration (runtime)
Model-driven development, architectural decisions (build time)
(Co-)Editor, Insights column, IEEE Software
PC member, e.g., ECSA, ESOCC, WICSA, SATURN, SummerSoC

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 3 .

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

http://www.redbooks.ibm.com/redbooks/pdfs/sg246292.pdf
http://design.inf.usi.ch/journals/IEEESoftware
https://www.cs.kent.ac.uk/events/2017/ECSA2017/previousyears.html
http://esocc2017.ifi.uio.no/organization.html
http://www.wicsa.net/
https://www.sei.cmu.edu/saturn/2017/
http://www.summersoc.eu/

1. Paradigms: Service-Oriented Computing (Re-)Visited
Service-Oriented Architecture vs. Microservices Architecture (?)
Microservices tenets: agile approach to service realization

2. Principles: From OOAD to SOAD and Agile Architecting
IDEAL cloud application architectures, coupling criteria
Architectural Decision Capturing and Sharing (OLAF, AKMAD)

3. Patterns: From Enterprise Application/Integration to Service Design and
Conversations

Interface Representation Patterns (IRP):
Pagination, Service Granularity (Business/Technical), Quality of Service

4. Open Source Tools for Service Design and Arch. Decision Making
ADMentor, Service Cutter

5. Conclusions and Outlook
Research challenges, vision and roadmap

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
B E e Page 4 .

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

Position Summary & Key Take Away Messages of this Talk

Microservices do not constitute a new style, but services are here to stay

Microservices evolved as an implementation approach to SOA that leverages
recent advances in agile practices, cloud computing and DevOps

Microservices Architecture (MSA) constrains the SOA style to make services
independently deployable and scalable (e.g., via decentralization)

Architectural principles and patterns characterize architectural styles
e.g. loose coupling is a key SOA principle (multiple dimensions)

There is no single definite answer to the “what is the right granularity?”
guestion, which has several context-specific dimensions and criteria

Business granularity: semantic density (role in domain model and BPM)
Technical granularity: syntactic weight and QoS entropy

Platform-independent service design can benefit from interface
representation patterns such as Parameter Tree, Pagination, Wish List

Pattern-centric service design involves architectural decisions that recur

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Page 5

Process-Enabled Order Mgmt. SOA for Telecom Service Provider

f Client
Presentation < rft?sen-
Layer @ton
Channel

Business Logic <

Backend

Integration & Core
Persistence Systems

" Controller

“We decided for the Model-View-Controller
(MVC) pattern to control Web page flow
because we gained positive experience with it

on many similar projects.”
e e B W Facaas
I

wspLHH

h h 4

Business|® *

Activity Stub 1 4’<’>—’ Activity Stub n t’@

\ Services

Process ‘ >
Layer Business Process Engine /va

Short Running i c\;su::t A We decided for the BPEL language
P WSDL as workflow technology because it is

rocoss il == I e AN standardized and supported by tools.”
Activities mplementation Activi -
= |

Business Rsa

Services)]]
______________________ “We decided for Apache Axis as our Enterprise
Application Service Bus (ESB) asset

because it performs and scales well.”

Core Core H Y X
— System1 = System n Bu_smess £ 181
Wi I. ...other| Objects Noess e B

Layer
Reference: Zimmermann et al, ,SOA and Business Process Choreography in an Order Management Scenario:
Rationale, Concepts, Lessons Learned®, OOPSLA 2005 conference companion, ACM Press, 2005
- HSR STITUTE FOR
HOCHSCHULE FUR TECHNIK © INSTITU
. . RAPPERSWIL Page 6 :

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017. SOFTWARE

What is SOA? (Source: OOPSLA Tutorials 2004-2008)

No single definition — “SOA is different things to different people” BRI
Domain
Analyst
» A set of services that a business wants to expose to their
customers and partners, or other portions of the organization.
» An architectural style which requires a service provider, a service Architect
requestor (consumer) and a service contract (a.k.a. client/server).
» A set of architectural patterns such as enterprise service bus,
service composition, and service registry, promoting principles
such as modularity, layering, and loose coupling to achieve design
goals such as separation of concerns, reuse, and flexibility.
Developer,

Administrator

» A programming and deployment model realized by standards,
tools and technologies such as Web services and Service
Component Architecture (SCA).

Adapted from IBM SOA Solution Stack (S3) reference architecture and SOMA method, https://www-01.ibm.com/software/solutions/soa/

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 7
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

https://www-01.ibm.com/software/solutions/soa/

The Seven ZIO Tenets for Microservices Implementations of SOA

Fine-grained interfaces to single-responsibility units that encapsulate data and
processing logic are exposed remotely to make them independently scalable,
typically via RESTful HTTP resources or asynchronous message queues.

Business-driven development practices and pattern languages such as Domain-
Driven Design (DDD) are employed to identify and conceptualize services.

Cloud-native application design principles are followed, e.g., as summarized in
Isolated State, Distribution, Elasticity, Automated Management and Loose
Coupling (IDEAL).

Multiple storage paradigms are leveraged (SQL and NoSQL) in a polyglot
persistence strategy.

Lightweight containers are used to deploy services.
Decentralized continuous delivery is practiced during service development.

Lean, but holistic and largely automated approaches to configuration and fault
management are employed (a.k.a. DevOps).

Reference: O. Zimmermann, Microservices Tenets — Agile Approach to Service Development and Deployment,
Proc. Of SummerSoC 2016, Springer Computer Science — Research and Development, 2016 (CSR&D Paper).

. . RAPPERSWIL Page8

HSR

HOCHSCHULE FUR TECHNIK

INSTITUTE FOR
SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

http://rdcu.be/mJPz

Microservices — An Early and Popular Definition (2014)

Reference: http://martinfowler.com/articles/microservices.html

m J. Lewis and M. Fowler (L/F): “[...] an approach to developing a single
application as a suite of small services, each running in its own process
and communicating with lightweight mechanisms, often an HTTP
resource API. These services are built around business capabilities and
independently deployable by fully automated deployment machinery.
There is a bare minimum of centralized management of these services,
which may be written in different programming languages and use

different data storage technologies.”

B |EEE Software Interview with J. Lewis, M. Amundsen, N. Josuttis:

INSIGHTS

Microservices in
Practice, Part 1

Microservices in Reality Check and Service Design
P ract 1C e 3 Pa rt 2 Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James Lewis, and Nicolai Josuttis

Service Integration and Sustainability

Microservices are in many ways a
best-practice approach for realizing
service-oriented architecture.

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 9

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://ieeexplore.ieee.org/document/7888407/
http://ieeexplore.ieee.org/document/7888407/
http://martinfowler.com/articles/microservices.html
http://ieeexplore.ieee.org/document/7819415/
http://ieeexplore.ieee.org/document/7819415/

Microservices Definition: 4+1 Viewpoint Mapping (More: CSR&D Paper)

Application Component Mapping to 4+1 Viewpoint Mapping to ZIO
Property (Gartner/TMF) Model (Kruchten 1995) Tenet

tightly scoped Scenario/Use Case, Logical

strongly encapsulated Logical, Development

loosely coupled

1

Development, Process (Integr.) 1,3

independently deployable | Process, Physical

independently scalable Process, Physical

1

1

Novel or “Same Old
Architecture”?

SOA

SOA
SOA

novel

novel

Logical VP (Functional)

Development VP

(Build Time Maintenance Qualities)

—

VP (Business, Test)

/ScenariolUse Case

Process VP (Runtime Qualities)

Physical VP (Operational Qualities)

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 10

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

From Tenets and Principles to Patterns and Decisions

Business Goal Design Goal

refined by (Intent)
. B u S i n eSS g O al S promoted by Exp.r;_r,_r,ed
. y\\
and design goals 77 N
. Par ad I g m S par{a':iag'g:;i?le characerized by Ar;r:ii::f;:leml

(defined by tenets)

i N\ L

B Principles N chrarscterized satisfied by
by
B Patterns / \\
Method or Architectural
. DeC | S | 0 n S Practice guides selection and adoption of Pattern
T

selects and justifies

B Methods and —
practices realizedin e

il
selects and justifies

Technology or
Aszet

O HSR
. . HOCHSCHULE FUR TECHNIK Page 11

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

INSTITUTE FOR
SOFTWARE

IDEAL Cloud Application Properties (Fehling, Leymann et al.)

Reference: Cloud Computing Patterns, Springer 2014, http://cloudcomputingpatterns.ora/

Isolated State: most of the application is stateless with respect to:
Session State: state of the communication with the application
Application State: data handled by the application

Distribution: applications are decomposed to...
... use multiple cloud resources
—

... support the fact that clouds are large globally distributed systems

Elasticity: applications can be scaled out dynamically
Scale out: performance increase through addition of resources
Scale up: performance increase by increasing resource capabilities

Automated Management: runtime tasks have to be handled quickly
(:;.-»Q Example: exploitation of pay-per-use by changing resource numbers

Example: resiliency by reacting to resource failures

? Loose Coupling: influence of application components is limited
H Example: failures should not impact other components
Example: addition / removal of components is simplified
: u E’:?:gwf FUR TECHNIK Page 12 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

http://cloudcomputingpatterns.org/

SOA Principle and IDEAL Application Property: Loose Coupling

m Academic contributions (research results):

General software engineering/architecture literature since 1960s/1970s
Starting from D. Parnas (modularization, high cohesion/low coupling)

ESOCC 2016 keynote by F. Leymann and PhD theses (e.g. C. Fehling):
Four types of autonomy: reference (i.e., location), platform, time, format

WWW 2009 presentation and paper by C. Pautasso and E. Wilde:

12 facets used for a remoting technology comparison, e.g., discovery, state,
granularity

®m Practitioner heuristics (a.k.a. coupling criteria) scattered in books,
articles, blogs:
SOA in Practice book by N. Josuttis, O'Reilly 2007
11 types of (loose) coupling; emphasis on versioning and compatibility
IBM Redbook SG24-6346-00 on SOA and ESB (M. Keen et al.), IBM 2004

Coupled vs. decoupled continuum: semantic interface, (business) data model,
QoS (e.g. transactional context, reliability), security

DZone, IBM developerWorks articles, InfoQ, MSDN, ...

O HSR
. . HOCHSCHULE FUR TECHNIK Page 13

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://esocc2016.eu/keynotes/
http://dret.net/netdret/docs/loosely-coupled-www2009/(1)
http://www2009.eprints.org/92/1/p911.pdf
http://www.soa-in-practice.com/
http://www.redbooks.ibm.com/abstracts/sg246346.html?Open
http://www.dzone.com/mz/cloud
https://www.infoq.com/architecture/

Coupling Criteria (CC) in “Service Cutter’ (ESOCC 2016 Paper)

Cohesiveness Compatibility Constraints Communication
Semantic Structural Content Consistency .-
Proximity Shared Owner Volatility Volatility [Constraint] [Mutability

' i - r N f N r N .
Identity & Lat Consistency Availability Security Network Traffic
Lifecycle atency Criticality Criticality Constraint Suitability
Commonality . ’ N\ ’ . > N > w
h J i N i N i N r "
Security Storage Security Predefined
Contextuality Similarity Criticality Service
- o - S g Constraint
. v

Full descriptions in CC card format: https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

m E.g. Semantic Proximity can be observed if:

Service candidates are accessed within same use case (read/write)
Service candidates are associated in OOAD domain model

® Coupling impact (note that coupling is a relation not a property):

Change management (e.qg., interface contract, DDLS)
Creation and retirement of instances (service instance lifecycle)

O HSR
HOCHSCHULE FUR TECHNIK Page 14

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

From Tenets and Principles to Patterns and Decisions

Business Goal Design Goal
refined by (Intent)
®m Business goals promoted by wressa
and design goals / \
. Par ad I g m S par;:i“ag'g:;i?le characerized by Ar;fr'liirt:::.::zral

(defined by tenets)

® Principles /7 \ /

SUpports chraracterized satisfied by
by
B Patterns A 122
Method or Architectural
u DeC | S | 0 n S Practice guides selection and adoptionjof Pattern
= d justifi
g and justifies

® Methods and |

- - Architectural
H realized in P
praCtlceS Decision
selects and justifi E;-F

Technology or
Aszzet

M HSR
HOCHSCHULE FUR TECHNIK Page 15 : INSTITUTE FOR
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

Service Granularity Test (by Example)

m Test: Do the exemplary services qualify as microservices?
“small” (Lewis/Fowler) and “fine grained” (Netflix, ZI1O)?
“having a single responsibility” (R. Martin)?
“being maintainable by a 2-pizza team” (J. Bez0s)?
supporting IDEAL principles such as loose coupling (Fehling et al, ZIO)?

m Example A: Exchange Rates in YaaS/Hybris (SAP):

https://devportal.yaas.io/services/exchangerates/latest/

m Example B: Create an Outbound Delivery with a Reference to a Sales
Order (in ESA/Hana via SAP Business Hub)

https://api.sap.com/#/catalog/a7a325f837df42f8a5¢1083890e28801/I1 SHP
OUTBOUNDDELIVERYCWRRC/SOAP

M HSR
EE :Ao:::ﬂcswll.-s FUR TECHNIK Page 16 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

https://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.telegraph.co.uk/business/2016/10/12/amazons-two-pizza-rule-isnt-as-zany-as-it-sounds/
https://devportal.yaas.io/services/exchangerates/latest/
https://api.sap.com/#/catalog/a7a325f837df42f8a5c1083890e28801/II_SHP_OUTBOUNDDELIVERYCWRRC/SOAP

Service Granularity in Scientific Literature and Practice Reports

B Business granularity (a.k.a. semantic density) has a major impact on
agility and flexibility, as well as maintainability

Position of service operation in Business Architecture, e.g., expressed in a
Component Business Model (CBM) or enterprise architecture model

Amount of business process functionality covered

Entire process? Subprocess? Activity?
Number and type of analysis-level domain model entities touched

m Technical granularity (a.k.a. syntactic weight) determines runtime
characteristics such as performance and scalability, interoperability —
but also maintainability and flexibility

Number of operations in WSDL contract, number of REST resources
Structure of payload data in request and response messages

QoS entropy adds to the maintenance effort of the service component

Backend system interface dependencies and their properties (e.g. consistency)
Security, reliability, consistency requirements (coupling criteria)

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 17 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

https://en.wikipedia.org/wiki/Component_business_model

Granularity Scores by Service Pattern and Granularity Type

Service Granularity Scores (Relative, 1 to 5 Scale)

6
5 5 5
5
4 4 4
4
3 3 3
3
2 2 2
2
1 g
| I I
0
Busines Transaction Entity Search Status Check Master Data CRUD Periodic Report
(Activity)
Semantic Density m Syntactic Weight m QoS Entropy (Transactionality, Security, Reliability)

B HSR
EE :AD::Esﬂcsrlell.-E FUR TECHNIK Page 18 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

Granularity Types and Criteria — Findings

m Granularity is property of service contract exposed by a service provider

Not an exact measure/metric, but a heuristic/an indicator of modularity and
cohesion (on different levels of abstraction)

Business granularity vs. technical granularity (syntax, QoS)

m Can’t really tell the “right” size w/o use cases and (de)coupling criteria —
“it depends”:

Clients, contexts, concerns differ — for good reasons!

Service semantics, information need of consumer
Hidden complexity (backend, relations)

m Conclusion: A continuum of service granularity patterns exists

There is no such thing as a “right” service size for all systems and service
ecosystems

B Sometimes granularity is also seen as an architectural principle:

https://en.wikipedia.org/wiki/Service qgranularity principle

M HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 19 E INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

https://en.wikipedia.org/wiki/Service_granularity_principle

Service Granularity Patterns: In/Out Message Structure

WSDL,
Service | ~Scope: Role: Phase: »| XML Schema
Model Service Operation Service Modeler Macro Design Contracts
Decision drivers: Functional requirements (domain model), capabilities of BPEL, SOAP,
WSDL, XML processors (verbosity), interoperability, network topology, number of
deployment artifacts and generated code structure, strong vs. weak typing philosophy.
»| XML Profiling
‘¥ Issue: In Message Granularity (Conceptual/Technology Level)
Business - How many message parts should be defined in the service contract?
Granularity " How deeply should the part elements be structured?
The four alternatives have not been published as patterns yet. | Out Message
“| Granularity
Alternative 1: Alternative 2: Alternative 3: Alternative 4:
Service Atomic Parameter Parameter Tree Atomic Parameter Parameter Comb _
Type Pattern Pattern List Pattern Pattern Q| Gl v
Single scalar (Dot) Single complex Multiple scalar Multiple complex e Service
parameter (Bar) parameters parameters Grouping
Easy to process for (Dotted Line)
SOAP/XML engines, Deep structure and Combination of
much work for exotic types can Handled by all options 2 and 3,

. ; i Component
Enterprise || programmer . cause common engines, biggest overhead —> _
Data Model interoperability some programmer for processing pliEHping

issues. convenience. engines.

Reference: Recommendation: All alternatives have their place; alternatives 2 and 3 are often chosen. WDSL, XSD
Adapted from Base decision on layer and service type. Avoid overly deep nesting of data structures > Editor
IBM, SATURN unless you want to stress test the XML processing ©. Minimize message verbosity. Selection
2010

- HSR NSTITUTE FOR

¥ ©
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 20 : lSOFTWLi\RE

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

Towards an Interface Representation Pattern Language (IRP)

API Styles
Foundations and Types

Basic
Remote Service
Abstractions

Service
Coupling
Criteria

Web API Design and
Evolution (WADE)

Service ldentification
(Process)

Core Service Design

Representation
(Syntactic Weight)

Content Delivery
(Semantic (QoS
Density) Entropy)

Service Evolution (Lifecycle Management)

Interface Facets/
Granularity Types

Cross
Cutting
Concerns

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 21
© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

Candidate Patterns in IRP (Work in Progress)
_caegoy | . |

Foundations

Process

Representation

Content
Semantics

QoS

Evolution

Vertical Integration,
Horizontal Integration

Contract First

AtomicParameter
(Single Scalar, Dot)

Pagination, Page

Wish List

Command

Service Contract,
Context Object

Semantic Versioning,
Version ldentifier

Public API
Static Discovery
Parameter Tree

(Single Complex)

Query Parameter

Request Deck

Reporting Service

SLA-SLO

Two (Versions) in
Production

Community API

Dynamic Discovery

Atomic Parameter
List (Mult. Scalars,
Dotted Line)

Cursor

Metadata
Parameter

Status Check

API Key/Access
Token

Aggressive
Deprecation

Solution-Internal
API

Service Model

ParameterComb
(Multiple Complex)

Offset

Annotated
Parameter List

Master Data
Update

Rate Limit

Liberal Receiver/
Conservative
Sender

Reference: O. Zimmermann et al., Interface Representation Patterns, submitted to EuroPLOP 2017

O HSR

RAPPERSWIL

HOCHSCHULE FUR TECHNIK

FHO Fachhochschule Ostschweiz

Page 22

© Olaf Zimmermann, 2016.

INSTITUTE FOR
SOFTWARE

http://www.europlop.net/content/conference-0

Example IRP: Pagination (1/2)

m Context
An API endpoint and its calls have been identified and specified.

B Problem

How can a provider transmit large amounts of repetitive or inhomogeneous
response data to a consumer that do not fit well in a single response
message?

B Forces

Data set size and data access profile (user needs), especially number of
data records required to be available to a consumer

Variability of data (are all result elements identically structured? how often
do data definitions change?)

Memory available for a request (both on provider and on consumer side)
Network capabilities (server topology, intermediaries)
Security and robustness/reliability concerns

O HSR
. . HOCHSCHULE FUR TECHNIK Page 23

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

Example IRP: Pagination (2/2)

Eh

Divide large response data sets into manageable and easy-to-transmit chunks.

Send only partial results in the first response message and inform the consumer
how additional results can be obtained/retrieved incrementally.

Process some or all partial responses on the consumer side iteratively as
needed; agree on a request correlation and intermediate/partial results
termination policy on consumer and provider side.

m Solution

Legend: Request R M y
(Query) (Query Result) (from EIP)

B Variants @ @ @)l

Result Record Set)

Cursor-based vs. offset-based

Endpoint API Provider Data Store
(e.g.. RDBMS, NoSQL, EIS)

B Consequences

E.g. state management required Pravs f—j @ (), 12, (13
_ /_/ — Pwk (10}
® Know Uses: - IR N
Page 3 (18} E18 - Entorprse Information System
Public APIs of social networks = % B
B HSR
EE :AD::ESF(C;\:\:ILE FUR TECHNIK Page 24 : INSTITUTE FOR

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017 SOFTWARE

From Tenets and Principles to Patterns and Decisions

Business Goal Design Goal
refined by (Intent)
®m Business goals promoted by wressa
and design goals / \
. Par ad I g m S par;:i“ag'g:;i?le characerized by Ar;fr'liirt:::.::zral

(defined by tenets)

® Principles /7 \ /

Supports chraracterized =atizfied by
by
B Patterns \
Method or Architectural
1 H Practi guides selection and adoption of Pattern
B Decisions

selects and justifies

® Methods and —
practices realizedin e

-

selects and justifi

Technology or
Aszzet

M HSR
HOCHSCHULE FUR TECHNIK Page 25 : INSTITUTE FOR
B E e - SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

AD Modeling with Reuse — Context and Motivation (by Example)

m AD capturing matters, e.g. ISO/IEC/IEEE 42010 has a rationale element

But it remains an unpopular documentation task
— patrticularly, but not only in agile communities

Effort vs. gain (feeding the beast)?
m Example (from cloud application design): Session State Management

Shopping cart in online commerce SaaS (e.g., Amazon) has to be stored
while user is logged in; three design options described in literature

Message
sessionlD sessionlD
Client - P> Server
R D ——
L 7

“In the context of the Web shop service, facing the need to keep user session data
consistent and current across shop instances, we decided for the Database Session

v State Pattern from the POEAA book (and against Client Session State or Server
Session State) to achieve ideal cloud properties such as elasticity, accepting that a
session database needs to be designed, implemented, and replicated.”

Reference: (WH)Y-template first presented at SEI SATURN 2012 and later published in IEEE Software and InfoQ,
http://www.infog.com/articles/sustainable-architectural-design-decisions
(inspired by decision part in George Fairbanks’ Architecture Haiku, WICSA 2011 tutorial)

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 26
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://www.iso-architecture.org/42010/
http://martinfowler.com/eaaCatalog/index.html
http://www.infoq.com/articles/sustainable-architectural-design-decisions

From Decisions Made to Decisions Required (Guidance)

m Approach: Refactor decision capturing templates into problem-option-
driver fragments and change tone, to separate concerns and to ease reuse

current across shop instances, we decided for the Database Session State Pattern from the POEAA
book (and against Client Session State or Server Session State) to achieve cloud elasticity, accepting

¥ “In the context of the Web shop service, facing the need to keep user session data consistent and
that a session database needs to be designed, implemented, and replicated.”

Curate {decision need, solutions, qualities} for
reuse — but not the actual decision outcomes

“When designing a stateful user conversation (for instance, a shopping basket
in a Web shop), you will have to decide whether and how session state is
persisted and managed.” (question: is this a requirement or stakeholder concern?)

“Your conceptual design options will be these patterns: Client Session State,

Server Session State, and Database Session State.”
(question: are patterns the only types of options in AD making?)

“The decision criteria will include development effort and cloud affinity.”
(question: what else influences the decision making?)

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL Page 27
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://martinfowler.com/eaaCatalog/index.html

IRP Selections (a.k.a. Service Design Space) in ADMentor

m Patten selection and
adoption qualifies as
AD making

Rationale to be
captured: qualities,
conformance with
principles, etc.

® Guidance through
service design
space via problem-
option pair modeling

In ADMentor

4 Elements

(} Problem
(> Option
£ Problem Space Package

ProblemSpace IRP Problem Space Diagram /

Application of Chosen Service Identification

Method Returns API Method
Endpoint Plan listing «adAddressedBy»
API Calls
«adAddressedBy» | «adAddressedBy»
- ~

Analyis-Level BPM

Resource-Based «adRaises» 00AD
JSON
«adAddressedBy»
Message Exchange
API| Call Design Farinei
«adRaises»
«adRaises» N
«adAddressedBy»
Z \ XML
Message Exchange
Pattern «adRaises»
Pagination Pattern
«adAddressedBy»«adAddressedBy»
N
* «adAddressedBy» Cursor-Based
One Way Request Reply
«adAddressedBy«adAddressedBy»
«adRaises» «adRaises» «adRaises»
~
h g None Offset-Based
In Message Out Message
Granularity Granularity
«adAddressedBy» dAddressedBy»y»idressedB«adAddressedBy»icadAddressedBy» Additional Pattern Selection and
Adoption Decisions (separate diagrams):
. Expansion Pattern Usage (e.g., Wish
List)?
* Metadata Parameters
Atomic Parameter Atomic Parameter List Parameter Tree Parameter Comb * Rate LImit

. SLA-SLO
e etc

O HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 28
© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

ADMentor Tool (AddIn to Sparx Enterprise Architect)

m ADMentor is openly available at https://github.com/IES-HSR/ADMentor

Architectural Decision Guidance across Projects
Problem Space Modeling, Decision Backlog Management and Cloud Computing Knowledge

Olaf Zimmermann, Lukas Wegmann Heiko Koziolek, Thomas Goldschmidt
Institute for Software Regearch Area Software
Hochschule fiir Techmik (HSR. FHO) ABB Corporate Research
Rapperswil, Switzerland Ladenburg, Germany
{firstname lastname} @hsr.ch {firstname lastname} @de.abb.com

?
(- f=—®p—{ ~) - My version (the Y-approach): (WH)Y -

i = In the context of <use case/user story u=, facing <concern c>,

T T we decided for <option o> to achieve <quality g=>

= These Y-statements yield a bullet list of open/closed (design) issues
(link to project managementl)

- Can go to appendix of software architecture document, notes attached
to UML model elements, spreadsheet, team space, or wiki

Al

m Project website http://www.ifs.hsr.ch/index.php?id=13201&L=4

M HSR
HOCHSCHULE FUR TECHNIK © INSTITUTE FOR
Page 29 M
B E e - SOFTWARE

© Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

https://github.com/IFS-HSR/ADMentor
http://www.ifs.hsr.ch/index.php?id=13201&L=4

Research Problems in ESOCC 2007 Keynote — Still Open!

Leveraging Reusable o
Architectural Decision (screen caption clickable)

Models as a Design Method ISR

for Service-Oriented
Architecture Construction The Need for Service Modeling and Engineering Research

ECOWS Keynote = Focus @ ECOWS 2007 and other conferences:

Nov 28, 2007 Olaf Zimmermann — Dynamic matchmaking, automated service composition, semantics notations
IBM Zurich Research Lab — Only 2/24 ECOWS 2007 papers have a pure design time focus!
olz@zurich.ibm.com = Service modeling (SOAD) is where OOAD was in ~1995

— Several methods emerging, none of them is complete (page count!)
— Many overlapping techniques — no “silver bullet”, no consensus, not actionable
SOftW are Servi ce — None of them addresses detailed design concerns based on quality attributes
Engineering = Who advances state of the art in...

— ... IDEs for programming without call stack: resolving architectural forces,
refactoring to services, build time matchmaking?

DAGSTUHL — ... quality metrics for interface granularity and other design issues?

REPORTS — ... resolving tensions between different forms of pre- and postconditions in
contract design (human service designer vs. logic-based)?

(screen caption clickable) =» Dagstuhl seminar proposed: “Software Service Engineering”

39 Zurich Research Laboratory © 2007 I1BM Corporation

O HSR
. . HOCHSCHULE FUR TECHNIK Page 30

RAPPERSWIL
FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

INSTITUTE FOR
SOFTWARE

http://www.soadecisions.org/download/BIT-SOADecisions4ECOWSExt.pdf
http://www.soadecisions.org/download/BIT-SOADecisions4ECOWSExt.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2046/pdf/09021_abstracts_collection.2046.pdf
http://drops.dagstuhl.de/opus/volltexte/2009/2046/pdf/09021_abstracts_collection.2046.pdf

Service Design Science — Towards a Research Roadmap

CS Field Contribution Type(s)

Software engineering, SoC Design by contract, MDSE, value networks

Databases, Information Systems Representation modeling, query languages

Networking Protocol design (conversations), contract verification
(Interoperability. conformance testing)

Business Process Management and Service identification in static and dynamic business

Modeling (BPM) models, composition middleware

Distributed Systems, Event-driven, reactive, adaptive architectures,

Telecommunication Networks service discovery, metering and billing

Internet Technologies, Web Engineering Semantic (micro-)service linking (not matchmaking)

Theoretical Computer Science Formal definitions: SOA/MSA, service, MEP, etc.

m My take on future trends in service-oriented computing/service design:

Overarching knowledge question: How to adopt existing and new computer
science research results for the context of agile Web/service engineering?

“Long live services — of various kinds and granularities” (ZIO, 2016)

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL Page 31

FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://rdcu.be/mJPz

Summary

ility : Business

Flexibility: Design

Goal

S0A: Paradigm or

Goal jlntent[

Loose Coupling:

Style [via Tenets) Architectural B Thank you vey
Principle
Granularityis a muChl
) service property,)
S coupling is a property
of a relation between
services and their . Feed ba.Cl<’>
Micraservicas: CONSUMErs.
Paradigm or Style i 9
Parsdigmor Style Questions”
Comments?
Coarse-Grained Fine-Grained
]Semarltiﬁ!ly_']ﬂmimllx Light} Ideas’)
DEFE-E!S-EF‘H‘IL‘E Semvice Interface "
Interface Content: Representation:
Architectural Architectural
Pattern Pattern . NeXt StepS?
Qo5-Driven Service
Cut: Architectural
Pattern
™ HSR
HOCHSCHULE FUR TECHNIK INSTITUTE FOR
. . RAPPERSWIL Page 32

FHO Fachhochschule Ostschweiz

© Olaf Zimmermann, 2017.

SOFTWARE

SERVICE DESIGN
AS A SET OF RECURRING
ARCHITECTURAL DECISIONS:
PARADIGMS, PRINCIPLES, PATTERNS

Service Design and Service Granularity —
BACKGROUND INFORMATION

April 2017
Prof. Dr. Olaf Zimmermann (ZIO)
Certified Distinguished (Chief/Lead) IT Architect

Institute fur Software, HSR FHO
ozimmerm@hsr.ch

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

SOA Foundation: Partitioning into Components and Services

Traditional SOA
Users .
ul ‘ ‘
Applications “- Services
o @ 9 O
oa | @)1 19]

Discrete Applications
(Two or Three Tiers)

Example:

Basket of Services

0949408999

Services

????N?L/????

==

Components

??“???

g <= s

(sng 221n18S asldiaug)
8In10811Yy 2.y uoneibaw|

(s@21A18S ainjonaiselu))
Buuonuop % uswabeuey ‘A1uNdas ‘So0d

et

?9999¢?

Layering based on IBM SOA reference architecture

An insurance company uses three SAP R/3, MS Visual Basic, and COBOL applications to manage customer
information, check for fraud, and calculate payments. The user interfaces (UIs) are the only access points.

A multi-step, multi-user business process for claim handling, executing in IBM WebSphere, is supposed to
reuse the functions in the existing applications. How to integrate the new business process with the three
legacy applications in a flexible, secure, and reliable way?

O HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

FHO Fachhochschule Ostschweiz

Page 34

© Olaf Zimmermann, 2017.

INSTITUTE FOR
SOFTWARE

Architectural Principles and Heuristics

® Object-Oriented Analysis and Design (OOAD), Component-Based

Software Engineering (CBSE)

Single Responsibility Principle (SRP) by R. Martin (revisited by K. Henney)
Fowler’s First Law of Distributed Objects: Don’t distribute your objects
Cheesman/Daniels, Catalyst approach, Larman GRASP

m SOAD vision (2004)

EAM + BPM + OOAD
Coarse and fine grained granules

Business

Architecture

Several proposals from industry
responded to call for methods

Comains

Application

(none of which seem to sustain)

Service-Criented
Analysis and Design

® Rules of Thumb (ZIO)

== e

POINT principles for API design

Project Lifecycle Phase

“If in doubt leave it out” (metamodeling, method engineering and adoption)

“Worst first” (architectural decision making)

O HSR
HOCHSCHULE FUR TECHNIK Page 35

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

INSTITUTE FOR
SOFTWARE

SOA Principles and Patterns vs. Microservices Tenets

Aspect/Capability SOA Principles and Patterns Microservices Tenets and Patterns

Core metaphor (Web) Service, Service Contract Fine-grained interfaces, RESTful resources

Method OOAD/UP; SOMA and others Domain-Driven Design, agile Practices

Architectural principles Layering, loose coupling, flow IDEAL Cloud Architectural Principles
independence, modularity

Data storage Information Services (RDB, File) Polyglot Persistence (NoSQL, NewSQL)

Deployment and hosting Virtual machines, JEE, SCA,; Lightweight Containers (e.g., Docker,
Application Hosting/Outsourcing Dropwizard); Cloud Computing

Build tool chain n/a (proprietary vendor Decentralized Continuous Delivery

_ approaches, custom developed _

Operations (FCAPS) in-house assets, ITIL and other Lean but Comprehensive System
management frameworks) Management (a.k.a. DevOps)

Message routing, Enterprise Service Bus (ESB) API Gateway, lightweight messaging

transformation, adaption systems (e.g., RabbitMQ)

Service composition Service Composition DSLs, POPL Plain Old Programming Language (POPL)

Lookup Service Registry Service Discovery

Reference: O. Zimmermann, Microservices Tenets — Agile Approach to Service Development and Deployment,
Proc. Of SummerSoC 2016, Springer Computer Science — Research and Development, 2016.

O HSR
HOCHSCHULE FUR TECHNIK

B caerersw Page 36
FHO Fachhochschule Ostschweiz © Olaf Z|m mermann, 2017

INSTITUTE FOR
SOFTWARE

http://rdcu.be/mJPz

HSR

RAPPERSWIL

COMPUTER SCIENCE

Bachelor Thesis Fall Term 2015

Software

HOCHSCHULE FUR TECHNIK

Service Cutter

o @

iy dad

Lukas Kdlbener

zuhlke

empowering ideas

Michael Gysel

A Software Architect’s Dilemma....

How do | split
my system into
services?

Step 2: Calculate Coupling

— Data fields, operations and artifacts

are nodes.
— Edges are coupled data fields.

— Scoring system calculates edge

weights.

— Two different graph clustering
algorithms calculate candidate
service cuts (=clusters).
NI N
N .
VAN
VI
NN
ZRNNDRHS

NV

A clustered (colors) graph.

Step 1: Analyze System

Entity-relationship model
Use cases

System characterizations
Aggregates (DDD)

Coupling information is
extracted from these artifacts.

Step 3:

Advisor:

Co-Examiner:

Prof. Dr. Olaf Zimmermann

Prof. Dr. Andreas Rinkel

Project Partner: Ziuhlke Engineering AG

Compatibility

| I Constraints | | Communication

Change
Similarity

[Cnns\slﬁncy] [Bvaitability] [ng:;fg‘:‘!’] [Niutability]

Physical

volatility

Visualize Service Cuts

— Priorities are used to
reflect the context.

— Published Language
(DDD) and use case
responsiblities are
shown.

Technologies:

Java, Maven, Spring (Core,
Boot, Data, Security, MVC),
Hibernate, Jersey, Jhipster,
AngularJS, Bootstrap

https://github.com/ServiceCutter

el n
uiomaled
"
. u
vvvvvvvv Crdactrpe
L
[
u
ey SR]
u
L s I]
[
o e
ek
L) L]

Compaiibility Criteria
Structural voiauy

Consistency Criticallyy
suaiabitty Critieality

Content Velatilty

Other Research Projects: Architectural Refactoring Content/Tool

Architectural Refactoring for the Cloud (ARC)
m Pattern language for Web
Pattern- and Decision-based Modernization of Existing Applications for

the Cloud API Design and Evolution?

m [ean Decision Backlog?

(screen captions clickable)

Reviewed papers in journals and proceedings

» (50) M. Gysel, L. Kdlbener, W. Giersche, 0. Zimmermann, Senvice Cutter. A Systematic Approach to
Senvice Decomposition, Proc. of ESOCC 2016, Springer LMNCS.

Project results (overview):
* Decision- and task-centric definition of term architect
= (49) 0. Zimmermann, Microservices Tenets: Agile Approach to Service Development and Deployment

)) Cwenview and Vision Paper, Proc. of Symposium and Advanced School on Service-Oriented Computing
s Architectural refactoring template [SummerSaC), 2016

* Quality story templates

* Catal f |- hitectural refactori
e e el S » (48) H. Muccini, K. E. Harper, R. Heinrich, J. Bosch, M. Plouzeau, Q. Zimmermann, L. Baresi, V.

B e and R claud Cortellessa, Welcome Message from the Chairs of WICSA, QoSA and CBSE. Proc. of CBSE 20116.

* POINT criteria for AFI design and management; servi)))
« (47) 0. Zimmermann, C. Pautasso, G. Hohpe, B. Woolf, A Decade of Enterprise Inteqration Patterns: A

* ADMentar, prototypical tool support for architectural ¢ ¢qnyersation with the Authors. . IEEE Software 33(1): 13-19 (2016)
reuse, and Cloud Design Guidance Model crafted with

s (46) Q. Zimmermann, Architectural Refactoring for the Cloud: 3 Decision-Centric View on Cloud
Migration, Proc. of Symposium and Advanced School on Senice-Oriented Computing (SummerSoC),
Selected project results are featured in an QOF 2014 pn 2015

* (45) 0. Zimmmermann, Metrics for Architectural Synthesis and Evaluation: Use Cases and Compilation
by Viewpoint, Proc. of ICSE SAM 2015 (Second International Workshop on Software Architecture and

Metrics)
HSR NSTITUTE FOR
HOCHSCHULE FUR TECHNIK o I |
HE Page 38 M
RAPPERSWIL . SOFTWARE

FHO Fachhochschule Ostschweiz © Olaf Z|m mel’mann, 2017

https://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4
https://www.ifs.hsr.ch/Architectural-Refactoring-for.12044.0.html?&L=4
http://www.iaas.uni-stuttgart.de/institut/ehemalige/zimmermann/indexE.php
http://www.iaas.uni-stuttgart.de/institut/ehemalige/zimmermann/indexE.php

Software Architecture and SoC Resources

Projects

Software

ABOUT BACK ISSUES WRITE FOR US BSCRIBE SE-RADIO Lo JOIN

CURRENT ISSUE: THE ROLE OF THE SOFTWARE ARCHITECT

NOVEMBER/DECEMBER 2016

Architectural Refactoring
for the Cloud (ARC)

(screen captions clickable)

Cloud Knowledge
Sources

The Software
Architect’s Role
in the Digital Age

Gregor Hohpe, Allianz SE

Microservices
Resources and
Positions

Domain-Driven Design
Owverview and Links

Ipek Ozkaya, Carnegie Mellon Seftware Engineering Institute

DevOps Resources and

Uwe Zdun, University of Vienna

Pasitions

Olaf Zimmermann, U
Switzerland, Rappers

¥ of Applied Sciences of Eastern

Architectural Knowledge Hubs
Online Resources for Software Architects

The November/December 2016 Theme Issue of IEEE Software on the RBole of the
Software Architect in the Diigtal Age is a good starting point (Guest Editor's

Introduction to Theme Issue as PDF).

Websites by thought leaders that we frequently consult (amaong many others) are:
. Martin Fowler's Eliki

. Gregor Hohpe's Ramblings

. Philippe Kruchten's Weblog

. Ecin Wood's website and blog at Artechra

. Michael Stal's software architecture blog

. The Software Architecture Handbook website by Grady Booch

. Perzonal page of Gernot Starke (mostly in German) - arc42, aim42, IT

o s WK

architect profession

fus]

. Technical Reports and other publications in the Diaital Library of the Software
Institute (SEI

9. The Open Group website - IT Architect Certification, TOGAF, ArchiMate, XA
10. Object Management Group (OMG) - UML, SPEM, MDA, CORBA, ADM, KDM

11. [EEE Software, as well as SWEEBCK and the very readable standard for
architecture descriptions, ISO/IEC/IEEE 42010

Academic conferences (software architecture research): WICSA, QoSA, ECSA

Engineerin

12.

and online archives: ACM Digital Library, IEEE Xplore and ScienceDirect.

The following conferences have a practitioner focus on all things software
architecture are (most of the presentations are available online and can be
accessed from the conference websites):

1. SEI SATURN, e.g. SATURN 2013

2. Industry Day at CompArch/WICSA 2011

3. ECSA 2014 also had an Industry Day

4. 00OF (most talks in German, presentations not available online by default)

5. SPLASH and OOPSLA (e.g. practitioners reports program at OOPSLA 2008)

If you are new to the field, you can get started by reviewing the arc4?2 site (in

German) or look for architectural guidance and practices in OpenUE. If you have a
little more time to study, many excellent books on the topic are available to you,
including (but of cour=ze not limited to):
1. Software Svstems Architecture {Second Edition) by Nick Rozanski and Eoin
Woods introduces core architecture concepts, as well as a viewpoint- and
perspective-based architecture framework.

HSR

HOCHSCHULE FUR TECHNIK
RAPPERSWIL

Page 39
© Olaf Zimmermann, 2017.

FHO Fachhochschule Ostschweiz

INSTITUTE FOR
SOFTWARE

https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.ifs.hsr.ch/index.php?id=13193&L=4
https://www.computer.org/csdl/mags/so/2016/06/index.html
https://www.computer.org/csdl/mags/so/2016/06/index.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7725214

