
ARCHITECTURAL DECISION
GUIDANCE ACROSS PROJECTS

Olaf Zimmermann
Distinguished (Chief/Lead) IT Architect, The Open Group
Institute for Software, HSR FHO
Montreal, May 6, 2015

WICSA/CompArch 2015

Plenary Session 2 – Helping Architects Architect

Acknowledgments

 Joint work with ABB Corporate Research
 Funded by a 2014 Research Grant, Industrial Software Solutions program
 Open Source Software release planned (pending)

 IT architect community input
 ABB business units and group architects
 Cloud Computing Patterns book (Springer 2014) and supporting website
 Softwareforen Leipzig, software architecture group meeting Nov. 2014
 26 architects from different companies (ICT, insurance, telecommunications)
 Topic: workflow design

 SATURN 2013 Architectural Decisions (AD) BoF session attendees
 WICSA reviewers (2008-present)

© Olaf Zimmermann, 2015.
Page 2

http://www.cloudcomputingpatterns.org/
http://www.sei.cmu.edu/library/assets/presentations/zimmermann-saturn2013.pdf

Context and Motivation (by Example) (1/2)

 AD capturing matters, e.g. ISO/IEC/IEEE 42010 has a rationale element
 But it remains an unpopular documentation task

– particularly, but not only in agile communities
 Effort vs. gain (feeding the beast)?

 Example (from cloud application design): Session State Management
 Shopping cart in online commerce SaaS (e.g., Amazon) has to be stored

while user is logged in; three design options described in literature

“In the context of the Web shop service, facing the need to keep user session data
consistent and current across shop instances, we decided for the Database Session
State Pattern from the PoEAA book (and against Client Session State or Server
Session State) to achieve cloud elasticity, accepting that a session database needs to
be designed, implemented, and replicated.”
Reference: (WH)Y-template first presented at SEI SATURN 2012 and later published in IEEE Software and InfoQ,
http://www.infoq.com/articles/sustainable-architectural-design-decisions
(inspired by decision part in George Fairbanks’ Architecture Haiku, WICSA 2011 tutorial)

© Olaf Zimmermann, 2015.
 Page 3

http://www.iso-architecture.org/42010/
http://martinfowler.com/eaaCatalog/index.html
http://www.infoq.com/articles/sustainable-architectural-design-decisions

Context and Motivation (by Example) (2/2)

 Filling out a template (e.g. arc42, IBM UMF, Tyree/Akerman) is even more
time consuming – still practical for more than 10-20 ADs?
 Seven templates from 1998 to 2012 evaluated in paper
 Selected in “unSLR” (criteria: adoption in practice, diversity, maturity)
 Reviewed templates contain between 5 and 14 attributes/aspects of an AD

© Olaf Zimmermann, 2015.
 Page 4

http://confluence.arc42.org/display/templateEN/9.+Design+Decisions

From Decisions Made to Decisions Required (Guidance)

 Approach: Refactor decision capturing templates into problem-option-
driver fragments and change tone, to separate concerns and to ease reuse

“In the context of the Web shop service, facing the need to keep user session data consistent and
current across shop instances, we decided for the Database Session State Pattern from the PoEAA
book (and against Client Session State or Server Session State) to achieve cloud elasticity, accepting
that a session database needs to be designed, implemented, and replicated.”

 “When designing a stateful user conversation (for instance, a shopping basket

in a Web shop), you will have to decide whether and how session state is
persisted and managed.” (question: is this a requirement or stakeholder concern?)

 “Your conceptual design options will be these patterns: Client Session State,
Server Session State, and Database Session State.”
(question: are patterns the only types of options in AD making?)

 “The decision criteria will include development effort and cloud affinity.”
(question: what else influences the decision making?)

© Olaf Zimmermann, 2015.
 Page 5

Curate {decision need, solutions, qualities} for
reuse – but not the actual decision outcomes

http://martinfowler.com/eaaCatalog/index.html

Research Questions and Contributions Overview

 RQ 1: How to model decisions required so that a) they are applicable to
diverse projects, b) do not age fast e.g. due to technology evolution, and
c) are simple to maintain over time?
 To answer RQ 1, we supersede previous metamodels for decision

capturing and sharing with lean knowledge quadruples that give decisions
a guiding role that works effectively and efficiently both in traditional and in
agile settings.

 RQ 2: How to integrate decision modeling concepts into architecture
design practices and tools commonly used by architects to evolve their
designs and record decisions made along the way, without creating
more effort than gains?
 To respond to RQ 2, we annotate the decision knowledge with meta-

information, leveraging already existing organizing principles such as
viewpoints, refinement levels, and project stages. Decision capturing is
streamlined by leveraging lean documentation templates (from practitioner
literature) flexibly.

© Olaf Zimmermann, 2015.
 Page 6

Contributions (1/4): Refactored Domain Model (AD Quadruple)

© Olaf Zimmermann, 2015.
 Page 7

Model Type Problem Space Solution Space
Reach/Level Asset (Community) Project

Owner Knowledge Engineer Software Architect

Purpose Design Guidance Decision (Back-)Log

Need for
Architectural

Decision
Problem Problem

Occurrence

Design
Candidates Option Option

Occurrence

addressed
by

instantiates

instantiates

raises

raises

supports,
 …

n 1

n 1

Contributions (2/4): Knowledge Processing Workflow (BPMN)

 Page 8
© Olaf Zimmermann, 2015.

So
ftw

ar
e

Ar
ch

ite
ct

(P

ro
je

ct
)

A. Create
Problem
Space

K
no

w
le

dg
e

En
gi

ne
er

(C

om
m

un
ity

)

Problem Space Model
Ready for Project Use?

Yes

No

E. Create
Solution
Space

C. Annotate with
Meta-Information

start
project
phase

(or sprint)

start
modeling
initiative

D. Tailor
Problem
Space

F. Manage
Decision
Backlog

Problem
Space
Model

Solution
Space
Model

B. Model Problems
and Options

+ x +

Contributions (3/4): Meta Information – Predefined, but Extensible

Name Purpose, Rationale Sample Value(s)

Intellectual Property Rights Intellectual Property Rights (IPR) for
model element, e.g. confidentiality level,
copyright statement

Public, Company-Confidential,
© Company X, 2015

Knowledge Provenance Reference to a cited source and/or
acknowledgment of contributor

CCP book, PoEAA website, Project Y,
Architect Z

Refinement Level The abstraction level on which this
problem typically occurs

Conceptual Level, Technology Level

Project Stage Gate, milestone, phase and/or
elaboration point in incremental and
iterative design (in which this problem is
typically tackled)

Inception, Elaboration, Construction
(in OpenUP)

Organizational Reach Sphere of influence of the problem Enterprise, Division, Business Unit,
Project, Subsystem

Owner Role The role (as defined e.g. in OpenUP)
that is responsible and accountable for
the decision

Application Architect, Integration Architect

Stakeholder Roles People with an interest in this problem
(note: the accountable person is
annotated as owner role)

Enterprise Architects, Frontend Developers,
Testers

Viewpoint(s) e.g. one of the 4+1 views on software
architecture or a Rozanski/Woods
viewpoint

Logical Viewpoint, Deployment Viewpoint

© Olaf Zimmermann, 2015.
 Page 9

Contributions (4/4): Decision Backlog (Session State Example)

Problem Occurrence Status Viewpoint Owner Role Comple-
xity

…

Session State Management
Occurrence 1:

Web Shop (Buyer Channel)

Decided Functional Web architect High …

Session State Management
Occurrence 2:

Call Center Channel

Decided Functional Web architect High …

Session Database Provider
Occurrence 1:

Web Shop (Buyer Channel)

Open Information Data Architect Medium …

Session Database Provider
Occurrence 2:

Call Center Chanel

Open Information Data Architect Medium …

… … … … … …

© Olaf Zimmermann, 2015.
 Page 10

 No need to decide all open problems in next iteration/sprint

 Prioritization, search, filter according to metadata and project context

 Future work: add technical debt index, support architectural refactoring
 e.g. should-use vs. have-used (with assessment of principal and interest?)

Implementation : ADMentor Add-In to Enterprise Architect (EA)

 EA profile for extended AD/AKM metamodel and supporting diagrams

 CRUD on metamodel instances (model elements), renaming, moving

 Package explorer, project explorer, matrices

 Rich text notes (with Web links)

 Model search

 Model patterns

 Model analytics

 Report template engine

 Custom link (stereo-)types

 …

ADMentor Tool Demo @ 6pm in Lobby area

© Olaf Zimmermann, 2015.
 Page 11

User Interface – Seamless Integration into EA Modeling Platform

 Page 12
© Olaf Zimmermann, 2015.

Validation 1: Cloud Pattern Language as Problem Space

 CCP book fully modelled in ADMentor
 Rich text snippets and Web links over

full self-contained meta model
instance (unlike in previous work)

© Olaf Zimmermann, 2015.
 Page 13

 Model and tool applied
to ABB architecture(s)
 Positive feedback

regarding effort and
effect (usefulness)

Cloud Guidance Model – Example: Workload Pattern Selection

 Problem descriptions:
 Motivating question
 Link to pattern category

 Option descriptions:
 Link to pattern
 List of known uses (partial)

© Olaf Zimmermann, 2015.
Page 14

ProblemSpace WorkloadPatternsPSD

Workload Pattern

Static Workload Periodic Wokload

Once-in-a-lifetime
Workload

Unpredictable
Workload

Continuously
Changing Workload

«adAddressedBy»«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

 Light text descriptions by intent
 Rich(er) content is available online

Validation 2: SOA and Workflow Problem Space Diagram

© Olaf Zimmermann, 2015.
Page 15

ProblemSpace SOA Design Decisions PSD

Logical Layering
Scheme

Service Scope
Granularity

Service Interface
Granularity

Comb PatternDotted Line Pattern Bar PatternDot Pattern

Coarse

Fine

PoEAA Layers (3+1)

Other Layering

SOA Layers (5+2)

Interface Signature
Sourcing

Frontend

Backend and
Database

OOAD Domain Model

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adAddressedBy» «adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adRaises»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

QOC Support – Demonstrates Feasibilty of Custom Extensions

 Design space
visualization
 Originally from

HCI community
 Some popularity

in AKM

 Elements:
 Questions (Q)
 Options (O)
 Criteria (C)

 Plus assessment
relations

© Olaf Zimmermann, 2015.
Page 16

ProblemSpace SOA Design Decisions QOC

Service Interface
Granularity

Dotted Line Pattern

Bar Pattern Performance

Maintainability

Question (adProblem)

Option (adOption)

Criterion (Requirement)

Argument

Legend

Comb Pattern

Dot Pattern

Name: SOA Design Decisions QOC
Author: ZIO
Version: 0.1
Created: 05.11.2014 14:37:15
Updated: 10.11.2014 09:36:52

See this paper from 1991 from HCI community for introduction to QOCing (note: the concept has been
picked up by several more communities later)

«idea»

My Argument A

Argument from QOCing
goes here!

«positiveAssessment»

«negativeAssessment»

«negativeAssessment»

«positiveAssessment»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

«adAddressedBy»

Solution Space Diagram and Occurrence State Management

 Page 17
© Olaf Zimmermann, 2015.

Summary (1/2): Context and Contributions

 Architectural decision making is a key responsibility of IT architects which is
often underestimated and underrepresented in existing methods and tools.
 AD capturing templates vary – supporting tools must accommodate that
 Metadata can help with AD tailoring and integration

 In cloud application design and other domains, many architectural decisions
recur. This makes it possible to reduce the documentation effort and to share
architectural decision knowledge in a consumable way:
 Decisions required vs. decisions made
 Benefits: design acceleration and quality assurance

 Tool support for decision modeling with reuse is emerging
 Decision Architect, ADMentor; Advise, Software Architecture Warehouse

 Collaboration opportunities abound…
 … do you have input to (or a need for) a cloud/SOA/workflow design space?
 … do you have a need/use for an AKM data set (e.g. cloud/workflow)?

© Olaf Zimmermann, 2015.
Page 18

Summary (2/2): ADMentor Implementation

 Joint work, HSR FHO and ABB Corporate Research
 Tool website: http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

 Add In for Sparx Enterprise Architect that supports AD reuse and
sharing (on top of AD documentation features of other tools)
 Problem and Option vs. Problem Occurrence and Option Occurrence
 Leverages standard product features as much as possible (e.g. rich text

editor, reporting, model refactoring, links)
 ProblemSpace Problem Space

Session State
Management

«adOption»
Serv er Session State

«adOption»
Client Session State

«adOption»
DB Session State

DB Model

Session Identification

«adOption»
Cookie Based

Session

«adOption»
Key/Value Store «adOption»

Relational DB

«adOption»
HTTP Parameter
Based Session

«adSupports»

«adHasAlternative»

«adHasAlternative»«adHasAlternative»

«adHasAlternative»

«adIncludes»

«adRaises»

«adHasAlternative»«adHasAlternative»

«adHasAlternative»

© Olaf Zimmermann, 2015.
Page 19

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4

More Information: Project Websites @ IFS HSR

Page 20
© Olaf Zimmermann, 2015.

(screen captions clickable)

http://www.ifs.hsr.ch/ADMentor-Tool.13201.0.html?&L=4
http://www.ifs.hsr.ch/Architectural-Knowledge-Hubs.13193.0.html?&L=4

ARCHITECTURAL DECISION
GUIDANCE ACROSS PROJECTS

Prof. Dr. Olaf Zimmermann
Institute for Software, HSR FHO
Montreal, May 6, 2015

WICSA/CompArch 2015

BACKGROUND MATERIAL

Y-Template

 Presented at SATURN 2012 (Haiku-style rationale with some traces):

 Page 22

Y
In the context of <use case uc

and/or component co>, … facing <non-functional concern c>,

… to achieve <quality q>,

and neglected <options o2 to on>,

… accepting downside <consequence c>.

We chose <options o1>,

Good and Bad Justifications, Part 1

Decision driver
type Valid justification Counter example

Wants and
needs of
external

stakeholders

Alternative A best meets user expectations and
functional requirements as documented in user
stories, use cases, and business process model.

End users want it, but no evidence for a pressing business
need. Technical project team never challenged the need for
this feature. Technical design is prescribed in the
requirements documents.

Architecturally
significant

requirements

Nonfunctional requirement XYZ has higher weight
than any other requirement and must be
addressed; only alternative A meets it.

Do not have any strong requirements that would favor one
of the design options, but alternative B is the market trend.
Using it will reflect well on the team.

Conflicting
decision drivers
and alternatives

Performed a trade-off analysis, and alternative A
scored best. Prototype showed that it's good
enough to solve the given design problem and has
acceptable negative consequences.

Only had time to review two design options and did not
conduct any hands-on experiments. Alternative B does not
seem to perform well, according to information online. Let's
try alternative A.

Source: Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM developerWorks, 2008

 Page 23

http://www.ibm.com/developerworks/architecture/library/ar-knowwiki1/

Good and Bad Justifications, Part 2

Decision
driver type Valid justification Counter example

Reuse of an
earlier design

Facing the same or very similar NFRs as successfully
completed project XYZ. Alternative A worked well there. A
reusable asset of high quality is available to the team.

We've always done it like that.

Everybody seems to go this way these days;
there's a lot of momentum for this technology.

Prefer do-it-yourself
over commercial off-
the-shelf (build over

buy)

Two cornerstones of our IT strategy are to differentiate
ourselves in selected application areas, and remain master
of our destiny by avoiding vendor lock-in. None of the
evaluated software both meets our functional requirements
and fits into our application landscape. We analyzed
customization and maintenance efforts and concluded that
related cost will be in the same range as custom
development.

Price of software package seems high, though
we did not investigate total cost of ownership
(TCO) in detail.

Prefer to build our own middleware so we can
use our existing application development
resources.

Anticipation of
future needs

Change case XYZ describes a feature we don't need in the
first release but is in plan for next release.

Predict that concurrent requests will be x per second shortly
after global rollout of the solution, planned for Q1/2009.

Have to be ready for any future change in
technology standards and in data models.

All quality attributes matter, and quality attribute
XYZ is always the most important for any
software-intensive system.

Source: Zimmermann O., Schuster N., Eeles P., Modeling and Sharing Architectural Decisions, Part 1: Concepts. IBM developerWorks, 2008

 Page 24

http://www.ibm.com/developerworks/architecture/library/ar-knowwiki1/

Recurring Issues (1/2)
Artifact Decision Topic Recurring Issues (Decisions Required)

Enterprise architecture
documentation [SZ92,
ZTP03]

IT strategy Buy vs. build strategy, open source policy

Governance Methods (processes, notations), tools, reference architectures, coding
guidelines, naming standards, asset ownership

System context [CCS07]

Project scope External interfaces, incoming and outgoing calls (protocols, formats,
identifiers), service level agreements, billing

Other viewpoints [Kru95] Development process Configuration management, test cases, build/test/production environment
staging

Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement

Data management Data model reach (enterprise-wide?), synchronization/replication, backup
strategy

Architecture overview
diagram [Fow03, CCS07]

Logical layers Coupling and cohesion principles, functional decomposition (partitioning)

Physical tiers Locations, security zones, nodes, load balancing, failover, storage placement

Data management Data model reach (enterprise-wide?), synchronization/replication, backup
strategy

Architecture overview
diagram [Eva03, Fow03]

Presentation layer Rich vs. thin client, multi-channel design, client conversations, session
management

Domain layer (process control flow) How to ensure process and resource integrity, business and system
transactionality

Domain layer (remote interfaces) Remote contract design (interfaces, protocols, formats, timeout
management)

Domain layer (component-based
development)

Interface contract language, parameter validation, Application Programming
Interface (API) design, domain model

Resource (data) access layer Connection pooling, concurrency (auto commit?), information integration,
caching

Integration Hub-and-spoke vs. direct, synchrony, message queuing, data formats,
registration

Source: O. Zimmermann, Architectural Decision Identification in Architectural Patterns. WICSA/ECSA Companion Volume 2012, Pages 96-103.

 Page 25

http://soadecisions.org/download/SOAD-SHARK2012v13Final.pdf

Recurring Issues (2/2)

Artifact Decision Topic Recurring Issues (Decisions Required)

Logical component
[ZTP03]

Security Authentication, authorization, confidentiality, integrity, non-repudiation, tenancy

Systems management Fault, configuration, accounting, performance, and security management

Logical component
[ZZG+08]

Lifecycle management Lookup, creation, static vs. dynamic activation, instance pooling, housekeeping

Logging Log source and sink, protocol, format, level of detail (verbosity levels)

Error handling Error logging, reporting, propagation, display, analysis, recovery

Components and
connectors [ZTP03,
CCS07]

Implementation technology Technology standard version and profile to use, deployment descriptor settings
(QoS)

Deployment Collocation, standalone vs. clustered

Physical node [YRS+99]

Capacity planning Hardware and software sizing, topologies

Systems management Monitoring concept, backup procedures, update management, disaster recovery

 Page 26

Source: O. Zimmermann, Architectural Decision Identification in Architectural Patterns. WICSA/ECSA Companion Volume 2012, Pages 96-103.

http://soadecisions.org/download/SOAD-SHARK2012v13Final.pdf

	Architectural Decision Guidance Across ProjectS
	Acknowledgments
	Context and Motivation (by Example) (1/2)
	Context and Motivation (by Example) (2/2)
	From Decisions Made to Decisions Required (Guidance)
	Research Questions and Contributions Overview
	Contributions (1/4): Refactored Domain Model (AD Quadruple)
	Contributions (2/4): Knowledge Processing Workflow (BPMN)
	Contributions (3/4): Meta Information – Predefined, but Extensible
	Contributions (4/4): Decision Backlog (Session State Example)
	Implementation : ADMentor Add-In to Enterprise Architect (EA)
	User Interface – Seamless Integration into EA Modeling Platform
	Validation 1: Cloud Pattern Language as Problem Space
	Cloud Guidance Model – Example: Workload Pattern Selection
	Validation 2: SOA and Workflow Problem Space Diagram
	QOC Support – Demonstrates Feasibilty of Custom Extensions
	Solution Space Diagram and Occurrence State Management
	Summary (1/2): Context and Contributions
	Summary (2/2): ADMentor Implementation
	More Information: Project Websites @ IFS HSR
	Architectural Decision Guidance Across ProjectS
	Y-Template
	Good and Bad Justifications, Part 1
	Good and Bad Justifications, Part 2
	Recurring Issues (1/2)
	Recurring Issues (2/2)

