Dr. Mario Amrein

KMN Kompetenzzentrum für Mathematik und NaturwissenschaftenLehrbeauftragter

+41 58 257 45 99mario.amrein@ost.ch

Beruflicher Abschluss

  • PhD in Mathematik, Universität Bern
  • Master in Mathematik , Universität Zürich
  • Bachelor in Mathematik (Nebenfach Philosophie), Universität Zürich
  • Höheres Lehramt in Mathematik , Universität Zürich

Weitere Angaben

Sämtliche Preprints meiner Publikationen finden Sie auf arXiv (siehe Link oben).

Fachliche Schwerpunkte

  • Numerische Analysis
  • Funktionalanalysis
  • Adaptive Verfahren für nichtlineare Probleme
  • Differentialgleichungen

Berufspraxis

  • Gelernter Zimmermann

Fachzeitschrift

  • (2024) Amrein, Mario: Residual growth control for general maps and an approximate inverse function result , Springer Nature, in: Archiv der Mathematik, S. 12
  • (2023) Amrein, Mario; Heid, Pascal; Wihler, Thomas P. A numerical energy reduction approach for semilinear diffusion-reaction boundary value problems based on steady-state iterations., in: SIAM Journal on Numerical Analysis. 61(2), S. 755-783
  • (2021) Amrein, Mario: Linearized continuous Galerkin hp-FEM applied to nonlinear initial value problems., in: Mathematical Methods in the Applied Sciences
  • (2020) Amrein, Mario; Hilber, Norbert. Adaptive Newton-type schemes based on projections., in: International Journal of Applied and Computational Mathematics
  • (2020) Amrein, Mario: A global Newton-type scheme based on a simplified Newton-type approach. Journal of Applied Mathematics and Computing. 65(1-2), S. 321-334.
  • (2019) Amrein, Mario. Adaptive fixed point iterations for semilinear elliptic partial differential equations., in: Calcolo. 56(3), S. 30
  • (2017) Amrein, Mario; Wihler, Thomas P. Adaptive pseudo-transient-continuation-Galerkin methods for semilinear elliptic partial differential equations. , in: Numerical Methods for Partial Differential Equations. 33(6)
  • (2016) Amrein, Mario; Melenk, Jens M.; Wihler, Thomas P. An hp-adaptive Newton-Galerkin finite element procedure for semilinear boundary value problems, in: Mathematical Methods in the Applied Sciences. 40(6), S. 1973-1985
  • (2016) Amrein, Mario; Wihler, Thomas P. An adaptive Newton-method based on a dynamical systems approach., in: Communications in Nonlinear Science and Numerical Simulation. 19(9), S. 2958-2973
  • (2016) Amrein, Mario; Wihler, Thomas P. An adaptive space-time Newton–Galerkin approach for semilinear singularly perturbed parabolic evolution equations, in: The IMA Journal of Numerical Analysis. 37(4), S. 2004-2019
  • (2015) Amrein, Mario; Wihler, Thomas P. Fully adaptive Newton-Galerkin methods for semilinear elliptic partial differential equations., in: SIAM Journal on Scientific Computing. 37(4), S. A1637-A1657