
A Domain-Specific Language to Process
Causal Loop Diagrams with R

Adrian Stämpfli

Abstract Causal Loop Diagrams (CLDs) are a flexible and valuable tool for
diagramming the feedback structure of systems. In strategic decision-making and
management, we use CLDs to structure and explore complex decision-making
situations, to foster learning, as a basis for simulation models, and to communicate
simulation results. However, the crucial dissemination of CLDs and the possible
learnings beyond the project-team is challenging.

To overcome this problem, we developed a Domain-Specific Language that
allows modeling experts with little programming experience to generate visual
representations of CLDs that (1) replace the most complicated CLD elements with
a step-by-step explanation and (2) strive to lower the barriers to learning while
addressing a broader target audience.

Keywords Strategic decision-making · Causal Loop Diagrams · System
Dynamics · Domain-Specific Languages · R

1 Introduction

System Dynamics (SD) is a method for modeling and simulation of complex
systems that adapts control theory to a broader set of problems [1]. Two key
elements differentiate SD from other methods in Operations Research. (1) SD
models generate dynamics endogenously. Many classical SD models show how
flawed internal policies of industries or cities generate decay without external
limiting factors [2]. (2) SD makes mental models explicit by modeling them as
CLDs. Making the models explicit is the basis for a deeper understanding of a

A. Stämpfli (�)
Institute of Modeling and Simulation, University of Applied Sciences St. Gallen, St. Gallen,
Switzerland
e-mail: adrian.staempfli@fhsg.ch

© The Editor(s) (if applicable) and The Author(s), under exclusive licence
to Springer Nature Switzerland AG 2020
J. S. Neufeld et al. (eds.), Operations Research Proceedings 2019, Operations
Research Proceedings, https://doi.org/10.1007/978-3-030-48439-2_79

651

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48439-2_79&domain=pdf
mailto:adrian.staempfli@fhsg.ch
https://doi.org/10.1007/978-3-030-48439-2_79


652 A. Stämpfli

messy situation, for revising mental models, for allowing double-loop learning to
occur, and for taking strategic decisions [3–6].

1.1 Causal Loop Diagrams

Causal Loop Diagrams (CLDs) are a widely used, flexible, and valuable tool for
diagramming the endogenous perspective or feedback structure of systems [8, 9].
CLDs are used (1) to structure complex problems; (2) to explore complex decision-
making situations in participatory modeling processes; (3) to foster learning among
stakeholders involved in the modeling process; (4) as a basis for simulation models,
and (5) to communicate results of simulation studies [4, 5, 10].

Mathematically, CLDs are a particular sort of directed cyclic graphs. They
consist of variables (in graph terminology: vertices) that are connected by directed
causal links (edges). Each link states a causal influence from the starting variable
to the ending variable. Each causal link is assigned a polarity, either positive
(+) or negative (-), that indicates how the dependent variable changes when the
independent variable changes [9]. Each feedback loop (cycle) describes positive
(reinforcing, R) or negative (balancing, B) feedback [9].

CLDs are an essential tool to foster learning and feedback processes among the
stakeholders involved in a project [4, 10]. However, the crucial dissemination of
those learnings beyond the project team is difficult and requires knowledge about
CLDs that senior decision-makers generally do not have [10, 11]. This impedes the
acceptance of CLDs and the implementation of project results [10].

2 An Embedded Domain-Specific Language to Process
CLDs in R

To overcome this problem, we developed an embedded Domain-Specific Language
(DSL) in R that allows us to import CLDs from standard SD tools into R and
to generate plots of those CLDs.1 ,2 The plots focus on specific aspects or parts
of the CLDs. By lowering the ‘technicalness’ and improving visual attractiveness,
we address a bigger audience. Existing research shows that the most complicated
elements of CLDs are the link and loop polarity signs. We thus replaced those
elements: The DSL allows explaining a CLD step-by-step by highlighting specific
causal chains and adding textual descriptions. The whole CLD is shown greyed-out
throughout the process, which ensures that the target audience receives the CLD

1At the moment we support Vensim. Support for Stella, the other major SD tool, is planned for a
future release.
2The DSL source code and further instructions are hosted at https://github.com/ims-fhs/cld.

https://github.com/ims-fhs/cld


A DSL to Process CLDs with R 653

as a whole. We assume that CLDs explained with the DSL allow for the same
insights as standard CLDs. Moreover, we assume that such CLDs improve the
chances of implementing insights generated within SD projects, because they (1)
help to broaden the possible audience of project results (because simplified visual
representations fit better to decision-makers’ mental models) [10] and, therefore, (2)
help to maintain overlaps between participants mental models and project results
[4, 11].

2.1 The R Language and Embedded DSLs

R is an open-source programming language and software environment designed
for statistical computing, data science, and graphics [12]. R is a very flexible pro-
gramming language. The combination of first-class environments, lexical scoping,
non-standard evaluation, and meta-programming make R especially well suited to
support the creation of embedded DSLs [13].

DSLs are computer programming languages of limited expressiveness focused
on a particular domain [14]. Embedded DSLs are composed of valid code in the
general-purpose language (GPL) they are written. They take advantage of that GPLs
parsing and execution framework [13]. The GPL naturally defines the syntactical
bounds for the embedded DSLs [13, 15].3

The usage of embedded DSLs offers some advantages over the usage of standard
libraries or frameworks: (1) A sense of fluency and a language nature can be
achieved by the usage of only a few design patterns [14]; (2) The DSL approach
increases programmer productivity [14], and (3) Embedded DSLs allow to write
code that is better understandable by domain experts. Domain experts, therefore,
can challenge the code more thoroughly. Requirements refinement, presumably the
most challenging part of software development, is improved.

2.2 DSL Grammar

Following, we present the developed DSL by discussing its grammar. The DSL
allows us to (1) ’IMPORT’CLDs from standard SD tools into R; (2) ’LINK’CLD
elements; (3) ’DESCRIBE’ groups of CLD elements with textual descriptions;
(4) ’PLOT’ the resulting graphics. We specify the grammar by using a standard
notation.4

3Relatively flexible languages like R let you bend the rules a little bit using non-standard evaluation
and meta-programming [15].
4The notation is a simplified version (with only two operators) of the Backus-Naur form.



654 A. Stämpfli

DSL Expressions and DSL Sentences Every sentence of the DSL starts with the
verb IMPORT.5 The verb PLOT is only allowed at the end of a sentence. The verbs
LINK and DESCRIBE can be composed in any possible way. This leads to the
following grammar:

DSL_SENTENCE ::= DSL_EXPRESSION
| DSL_EXPRESSION %>% PLOT

DSL_EXPRESSION ::= IMPORT
| DSL_EXPRESSION %>% LINK
| DSL_EXPRESSION %>% DESCRIBE

A valid DSL_SENTENCE can be any DSL_EXPRESSIONwith or withoutPLOT
at the end. A valid DSL_EXPRESSION can be any combination of an IMPORT at
the beginning and arbitrary chains of LINK and DESCRIBE actions afterward. We
use the pipe operator (%>%) to connect the actions inside a sentence.6

Causal Chains and Link Expressions We further need a sub-grammar to specify
causal chains inside the verb LINK. We need to consider regular causal chains
as well as the two extreme cases of causal chains: single variables and loops. We
implemented an infix operator [15] (%->%) called link operator to specify the causal
chains. We also need to select more than one causal chain in one link expression.
The following grammar covers all cases:

LINK_EXPRESSION ::= CAUSAL_CHAIN
| CAUSAL_CHAIN , LINK_EXPRESSION

CAUSAL_CHAIN ::= VARIABLE
| CAUSAL_CHAIN %->% VARIABLE

2.3 An Example

We use the same CLD as shown in Fig. 1, to demonstrate example usage of the
developed DSL. Consider the following DSL statement:

cld %>%
link(gap %->% actions, gap %->% pressure) %>%
link(actions, pressure) %>%
describe(type = "text", "A gap not only leads to actions

towards closing the gap, but also to pressure to adjust
the long time goals.") %>%

plot()

5Import covers two cases here: (1) the case, where we import a CLD; (2) the case, where we select
an already imported CLD.
6This is an application of the Expression Builder pattern in combination with the Method Chaining
pattern [14] exploiting R’s possibilities to define custom infix operators [15] and doing non-
standard evaluation in combination with meta-programming [13, 15].



A DSL to Process CLDs with R 655

Fig. 1 A sample CLD that illustrates the eroding goals systems archetype [7], a situation where
we provide actions to close a gap immediately, but at the same time accept that our goals decline
over time

Fig. 2 One exemplary step in explaining the eroding goals CLD [7]

The first link statement highlights the variable gap and the two consequences
of such a gap. The second link statement further highlights the two consequences.
The describe statement adds a textual description. The resulting plot is shown in
Fig. 2.7

3 Conclusions

CLDs are an essential tool to foster learning and feedback processes among the
stakeholders involved in a project [4, 10]. The crucial dissemination of those learn-
ings beyond the project team is, however, difficult and requires knowledge about
CLDs that senior decision-makers generally do not have [10, 11]. To overcome
this problem, we developed a DSL that allows generating visual representations of

7The colors are adjusted to grey tones for better printing results.



656 A. Stämpfli

CLDs which replace the most complicated elements with a step-by-step explanation.
In detail, this is solved using the following elements: (1) The greyed out model
with highlights is an elegant way to study a CLD without concealing the circular
structure at work. Having the feedback structure always there as a whole ensures
that the target audience receives all the graphics as being part of a single CLD; (2)
Highlighting certain elements helps to break the CLD into understandable pieces;
(3) Enriching the graphics with textual descriptions allows emphasizing important
mechanisms.

CLDs, we explain using the DSL expectedly allow for the same systems insights
as the original CLDs do. In combination with the sketchy and handmade look
and feel, we strive to improve the acceptance of CLDs for stakeholders of the
’untechnical’ kind.

To implement the solution in the form of an embedded DSL in R proves valuable
as well. Thanks to the DSL approach, we can write short, simple, and elegant
code, which in turn provides for excellent prototyping possibilities. R’s properties
allowed us to find surprisingly simple notations, grammars, and suitable plotting
possibilities.

In numerous client projects, the DSL turned out to be a very valuable tool: (1) to
develop a common problem understanding; (2) to communicate that understanding
to stakeholders beyond the project team; (3) to foster strategic decision-making.
A particular appealing application of the developed DSL is a project funded by
‘Innosuisse—Swiss Innovation Agency’ in the field of policy design for elderly
care.8

Future research is needed (1) to integrate the delay marks used in standard CLD
notation and (2) to explore further possibilities that enhance the DSL expressiveness
e.g., reference mode graphs or simulation capabilities.

References

1. Forrester, J.W.: Industrial Dynamics. M.I.T. Press, Cambridge (1961)
2. Richardson, G.P.: Reflections on the foundations of system dynamics. Syst. Dyn. Rev. 27, 219

(2011)
3. Torres, J.P., Kunc, M., O’Brien, F.: Supporting strategy using system dynamics. Eur. J. Oper.

Res. 260, 1081–1094 (2017)
4. Lane, D.C.: Modelling as learning: a consultancy methodology for enhancing learning in

management teams. Eur. J. Oper. Res. 59, 64–84 (1992)
5. Vennix, J.A.M.: Group model-building: tackling messy problems. Syst. Dyn. Rev. 15(4), 379–

401 (1999)
6. Paich, M., Sterman, J.D.: Boom, bust, and failures to learn in experimental markets. Manag.

Sci. 39, 1439–1458 (1993)

8More information on the on-going project can be found at https://www.fhsg.ch/de/forschung-
dienstleistungen/institute-zentren/institut-fuer-modellbildung-simulation/care-system-design/
verbesserte-planung-der-langzeitpflege/.

https://www.fhsg.ch/de/forschung-dienstleistungen/institute-zentren/institut-fuer-modellbildung-simulation/care-system-design/verbesserte-planung-der-langzeitpflege/
https://www.fhsg.ch/de/forschung-dienstleistungen/institute-zentren/institut-fuer-modellbildung-simulation/care-system-design/verbesserte-planung-der-langzeitpflege/
https://www.fhsg.ch/de/forschung-dienstleistungen/institute-zentren/institut-fuer-modellbildung-simulation/care-system-design/verbesserte-planung-der-langzeitpflege/


A DSL to Process CLDs with R 657

7. Senge, P.M.: The Fifth Discipline: The Art and Practice of the Learning Organization.
Doubleday/Currency, New York (1990)

8. Lane, D.C.: The emergence and use of diagramming in system dynamics: a critical account.
Syst. Res. Behav. Sci. 25, 3–23 (2008)

9. Sterman, J.: Business Dynamics: Systems Thinking and Modeling for a Complex World.
Irwin/McGraw-Hill, New Delhi (2000)

10. Wolstenholme, E.F.: Qualitative vs quantitative modelling: the evolving balance. J. Oper. Res.
Soc. 50, 422 (1999)

11. Hovmand, P.S.: Community Based System Dynamics. Springer, New York (2014)
12. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. J. Comput. Graph.

Stat. 5, 299 (1996)
13. Wickham, H.: Advanced R (CRC Press, Boca Raton, 2015)
14. Fowler, M.: Domain-Specific Languages (Addison-Wesley, Boston, 2011)
15. Mailund, T.: Domain-Specific Languages in R: Advanced Statistical Programming. Apress,

New York (2018)


